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Part 1: Audio Processing Basics [25 marks]

Task 1.2

Question 1: Discuss any differences between the two files in the time domain, giving possible
reasons.

Figure 1: Time domain plot of the 29045_TV and 49876_AV audio files. Full length. Both audio
signals show clear heartbeats with relatively regular patterns. The plots shown in this Figure do not
allow a clear visual differentiation between murmur and non-murmur.



Figure 2: Time domain plot of the 29045_TV and 49876_AV audio files. Zoomed x-axis (time).
Both plots show a clear, regular heartbeat with S1 and S2 mechanically annotated in the plot. As
research suggests that the sound between S1 and S2 (area highlighted in grey) is particularly relevant
for identifying murmurs, the significant amplitude in 29045_TV in this area indicates a murmur [37].

Table 1 provides an overview of the differences between the two files in the time domain:

Table 1: Comparison of heartbeat audio signals 29045_TV and 49876_AV in the time domain

File Observations Possible Reasons

29045_TV
Figure 1 &
Figure 2

- clearly recognisable heartbeats, espe-
cially when zoomed in
- constantly noticeable amplitude be-
tween S1 and S2 (see grey area in Fig-
ure 2), otherwise relatively small am-
plitude
- heart rate: ∼120 bpm, frequency: ∼2
Hz

- clear sound recording with little noise
- noticeable amplitude between S1 &
S2 might indicate murmur
- higher heart rate potentially conse-
quence of heart conditions that might
also cause murmor [49]

49876_AV
Figure 1 &
Figure 2

- heartbeats (incl. S1 & S2) can also be
identified, but with greater irregularity
and variation in amplitude
- difficult to accurately identify S1
- stronger fluctuations throughout
- heart rate: ∼90 bpm, frequency: ∼1.5
Hz

- likely normal heart
- less accurate recording with more
noise, different environment
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Question 2: Based on the above, can you visually differentiate between the murmur and
non-murmur heart sounds? Predict which is the murmur and which is the non-murmur.

• research shows sound development between S1 ("lub") and S2 ("dub") is particularly rele-
vant to identify murmurs [37]

• 29045_TV shows pronounced amplitude here (Figure 2) -> could represent "blowing,
whooshing, or rasping sound heard during a heartbeat" [47], indicating murmur

• possible murmur type: pattern similar to mitral regurgitation, but strongly audible at tricus-
pid valve (TV) -> might indicate tricuspid regurgitation [14, 21]

• -> 29045_TV = murmur

Task 1.3

Question 1: Discuss any differences between the frequency domain representations of the
murmur and non-murmur files.

Figure 3: Melspectogram representation of 29045_TV and 49876_AV. Full length with parameters
n_fft=1024, hop_length=128, and n_mels=256. Even without filtering and zooming, both melspec-
tograms clearly show distinguishable heartbeats with a clear separation of S1 and S2.

• 29045_TV (Murmur):

– concentration of peaks primarily in low-frequency range, up to ∼150Hz

– two further peaks/plateaus in frequency distribution around ∼250Hz and ∼650Hz

– generally more spread-out

– melspectogram representation, especially when zoomed (Figure 4), clearly reveals S1
and S2 with energy in high frequencies –> corresponds to typical high(er) frequencies
of murmurs [2]

• 49876_AV (Non-murmur):

– almost exclusively concentration of peaks in low-frequency range, although slightly
higher, up to ∼200Hz

– exhibits some isolated high-frequency peaks, likely noise

– melspectogram: short "bursts" for S1 & S2, indicating normal heartbeats
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Figure 4: FFT and zoomed melspectogram representation of 29045_TV and 49876_AV (same pa-
rameters as in Figure 3). Both frequency domain representations allow a clear identification of
29045_TV as the murmur file (see Question 1).

Question 2: Are there any features that are evident in the frequency domain that you could
not distinguish in the time domain?

• time domain cannot show which frequencies make up the signal –> frequency domain
allows conclusions regarding involved frequencies and extent of their involvement

• reveals that 29045_TV is composed of much stronger higher frequencies than 49876_AV
-> confirms, in line with scholarship [e.g. 2, 16, 39], classification of 29045_TV as murmur

Task 1.4

Question 1: Discuss and provide reasons for your choice of filter type and cutoffs.

Step 1 consider findings of initial visual analysis of (unfiltered) frequency domain graphs -> Fig-
ure 5 exhibits majority of peaks to a maximum of ∼1000Hz –> cutoff latest after 1000Hz
seems reasonable

Step 2 confirm detailed cutoffs & filter types through relevant scientific research about the typical
frequency range for heart sounds and murmurs & settings typically used in heart sound
analyses -> Table 2 informed decision to use 6th-order Butterworth bandpass filter
(BBF) with cutoff frequency from 20 to 600 Hz
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Element of Interest
Relevant

Frequencies
Filter Specified? Source

Cardiopulmonary
auscultation 50-1200 Hz N/A Charbonneau and Sudraud [1]

Heart sound 40-1100 Hz BFF
El-Segaier et al. [6]
Markaki et al. [18]

Heart sound 25-900 Hz 6th-order BBF Chakir et al. [23]
Heart beat 40-500 Hz 4th-order BBF Shekhar et al. [39]
S1 and S2 50-500 Hz N/A Spencer and Pennington [22]
S3 and S4 20-200 Hz N/A Spencer and Pennington [22]
Critical heartbeat 70-120 Hz N/A Bankaitis [46]

Murmurs 80-500 Hz N/A Tomas et al. [16]
Murmurs 200-410 Hz N/A Donnerstein [2]
Murmurs < 300 Hz N/A Spencer and Pennington [22]
Murmurs 20-150 Hz, < 500 Hz N/A Rennert et al. [5]
Most murmurs < 200 Hz N/A Debbal and Bereksi-Reguig [11]

Table 2: Overview of selected frequency and filter settings for analysing heartbeat and murmur
sounds in scientific literature
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Question 2: Provide a discussion of the differences between the raw and filtered data, and
thus on the importance of filtering in signal processing. Are there any potential disadvantages
or tradeoffs of applying signal processing?

Figure 5: Comparison of the unfiltered and filtered time and frequency domain plots for 29045_TV
(Murmur) and 49876_AV (Non-murmur) respectively. Filtering the audio signals facilitates the
analysis of the relevant sections of the signals (i.e. the heartbeat and murmur frequencies).

Differences :

• filtered signal in time domain is visually "thinner" & exhibits less noise around regions of
interest (i.e. heartbeat sound between S1 & S2) -> indicates reason for signal processing

• isolated and clear outliers (i.e. "noise") are removed

• filtered FFT plots reveal focus on strong frequencies and regions with relatively high am-
plitude

Importance:

• one of the most important and typical first steps in analysis of (heart) sounds [27, 45]

• goal: reveal information in measurements/signal [12, 17], remove undesired/unwanted sig-
nal components (e.g. noise), increase reliability, facilitate analysis of relevant parts [15]

Disadvantages & Trade-offs:

• filtering is a challenging task [8]

• facilitates analysis but risks removing relevant sounds, as noise often shares heart sound
frequency range [45]

• -> must be conducted carefully and based on evidence
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Task 1.5

Question 1: Discuss whether you can differentiate between the signals or not and if not, why
not.

• both files show numerous irregularities in time domain graphs (unfiltered & filtered) ->
heartbeats can be visually detected, but not as clearly analysed as in Task 1.2

• frequency domain plots below suggest murmur in AV_29045, due to stronger higher fre-
quencies and two regions with peaks, but AV_39043 exhibits strong energy in these areas
too

• -> overall no precise visual classification possible, at most hypothesis

Figure 6: Comparison of the unfiltered and filtered time and frequency domain plots for AV_29045
(likely murmur) and AV_39043 (likely non-murmur), respectively. Although the classification of
the audio signal still seems possible, it is very unreliable and, at best, an imprecise estimate, thus
highlighting the need for machine learning for classification in the audio field.
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Figure 7: Melspectogram representation of AV_29045 and AV_39043 with the same parameters
as in Task 1.3. The melspectograms still enable a visual classification of S1 & S2. However, a
precise classification of murmur vs. non-murmur is aggravated. Since S1 & S2 in AV_29045 exhibit
more power in higher frequencies, AV_29045 likely represents a murmur file. A more precise
classification requires further analysis.
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Part 2: Dataset processing [15 marks]

Task 2.2

Question 1: What is the ratio of normal to murmur patients? And what is the ratio of normal
to murmur samples? Can you think of any implications of this?

• #Normal Patients: 135, #Murmur Patients: 56, Ratio: 2.41

• #Normal Samples: 584, #Murmur Samples: 180, Ratio: 3.24, higher/worse than patient
ratio

• Implications: dataset (of samples!) is imbalanced -> likely strong negative impact on model
performance:

Bias: models might be biased towards predicting majority class (i.e. normal diagnoses), due
to higher frequency –> poor generalisation capabilities

Metrics: generally, but especially given class imbalance, accuracy can be inflated due to in-
creased specificity (see Table 10)

Mitigation: data resampling needed
Domain: common problem in medical datasets [13, 35]

Question 2: Prepare some graphs representing basic demographic split across classes, such as
sex, age, etc. Make sure you use the correct type of graph for your data to display the
information intuitively.

Figure 8: Age distribution of patients
Figure 9: Age distribution of patients with and
without murmur
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Figure 10: Sex distribution of patients
Figure 11: Sex distribution, patients with and
without murmur

Figure 12: Height distribution by sex Figure 13: Weight distribution by sex

Figure 14: Weight across age groups Figure 15: Height across age groups

Figure 16: Height and weight development Figure 17: Pregnancy status distribution
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Question 3: What significance does the demographic split carry in datasets used for ML?

• relevant for identifying potential biases in models and datasets -> if imbalanced, model
might only perform well on majority class [24]

• diverse dataset is necessary for model to generalise well across gender, age, different pop-
ulations etc., otherwise: bad performance for underrepresented groups [29] –> regulation
and ethics: healthcare is sensitive domain and models should not discriminate against se-
lected groups [38]

• can inform personalised treatment plans, drug development etc.

Task 2.4

Question 1: What is the effect of tackling the imbalance on the resulting classification
performance? Give results to compare different methods of tackling imbalance.

• Challenges and risks to consider [24]:

– upsampling: risk of overfitting as minority class samples are replicated
– downsampling: potential loss of useful information as majority class is reduced

• comparison of the classification results using upsampling (Table 5) vs. downsampling (Ta-
ble 6) reveals both methods allow for a balanced dataset leading to improved results

• upsampling: generally better Acc and Specificity

• downsampling: generallybetter MAcc and Sensitivity -> preferred in medical applica-
tions [30]
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Part 3: Feature extraction [30 marks]

Task 3.1

Question 1: Which features did you choose and why? Use literature and/or performance
assessments to inform your decisions.

Approach:

1. extensive literature review to identify relevant librosa features [51]: MFCC, Zero Cross-
ing Rate, Chroma STFT, Spectral Centroid, Spectral Bandwith, Spectral Contrast, RMS
Energy [7, 10, 25, 26, 31, 32]

2. model-based evaluation: extract feature importance using default settings (Figure 18 to
Figure 20)

3. choose most promising features (Figure 21)

4. optimise feature parameters (Question 2) & re-calculate feature importance & SHAP [43]
(Figure 23)

5. iteratively add features top-down, evaluate model, and pick best combination (note: risk of
overfitting to test data!)

Table 3: Selection of Librosa [51] Features for Heart Sound Classification

Feature Name Function Reason

RMS
Root Mean
Square Energy Measures signal energy Reflects energy of heart sounds,

helpful in detecting presence and
intensity of heartbeats [7]

Chroma Chromagram
Captures harmonic
content [9] Often used in music analysis [9].

Useful for identifying harmonic
patterns within heart sounds ->
might indicate pathologies [32]

ZCR Zero Crossing Rate
Measures frequency
of sign changes Indicative of turbulence or irreg-

ularities in heart sounds, widely
used [23]

Spectral
Centroid

Spectral
Centroid

Indicates "center of mass"
of the spectrum [3] Proven to be very successful in

distinguishing between normal and
murmur heart sounds [26]

Spectral
Contrast

Spectral
Contrast

Measures contrast in
spectral peaks and valleys [4] Distinguish between different

phonological aspects of heart
sounds, supporting identification of
abnormal sounds [32]

Spectral
Bandwidth

Spectral
Bandwidth

Measures width
of the spectrum (i.e. difference
between upper and lower
frequencies in a
continuous band of
frequencies)

Indication of spread of energy
across frequencies, useful for
detecting anomalies in heart
sounds [26, 36].

MFCC
Mel Frequency
Cepstrum Coefficients

Efficient representation
of signal information,
similar to human sound
understanding on small scale

Widely used in heart sounds analy-
sis [31, 33]
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Figure 18: Decision Tree mean feature impor-
tances

Figure 19: Random Forests mean feature impor-
tances

Figure 20: AdaBoost mean feature importances
Figure 21: Mean aggregated feature impor-
tances

Figure 22: Mean aggregated feature importance of optimised features. In this setting, RMS is
the most important feature for identifying murmurs, followed by MFCC, Spectral Contrast, Zero
Crossing Rate (ZCR), Chromagram, Spectral Bandwith, and Spectral Centroid.
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Figure 23: Top 10 features with highest SHAP (SHapley Additive exPlanations) scores. In line with
Figure 22, RMS and MFCC should be considered the most relevant features for murmur classifica-
tion.

Question 2: What parameters have you chosen for the features that you extracted (e.g. hop
length, window size, etc.) and why?

Approach (Figure 24 to Figure 27):

1. grid search on parameters for above features

2. for each combination, calculate mean difference between distributions of feature calculated
for both classes

3. pick parameter(s) generating the biggest difference

4. set best parameter for other features

Chosen parameters:

• hop_length=128 (Figure 24) & findings in Task 1.3

• n_fft=256 (Figure 25)

• fmin=50, n_bands=3 (Figure 26)

• n_chroma=24 (Figure 27)

• n_mfcc=19, informed by Yaseen et al. [25]
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Figure 24: RMS distribution for
hop_length=128 (tested parameter values:
128, 256, 1024, 2048)

Figure 25: MFCC distribution for n_fft=256
(tested parameter values: 128, 256, 512, 1024,
2048)

Figure 26: Spectral contrast distribution for
fmin=50, n_bands=3 (tested parameter values:
fmin: [10, 20, 50], n_bands: [3, 4, 5, 6])

Figure 27: Chroma STFT distribution for
n_chroma=24 (tested parameter values: [12,
16, 20, 24])

Task 3.4

Question 1: Describe the full preprocessing pipeline that you used.

Figure 28: Full Preprocessing Pipeline, based on [33, 40]

1. Address class imbalance by upsampling or downsampling (Task 2.4)

2. De-noise data using the same BBF as in Task 1.4

3. Extract relevant features (see above)

4. Standardise features using scikit-learn’s StandardScaler [50]

5. Reduce data dimension through 95%-Principal Component Analysis (PCA), proven to im-
prove performance in cardiac analysis [40, 41]
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Question 2: Which features or combination of features yield the best performance and why?

• Table 4 shows disadvantages and risks of using accuracy as (sole) performance metric, i.e.
iterations 3 & 4 show high accuracy, but sensitivity of 0.0

• for clinical applications, such as murmur identification, sensitivity is of significant rele-
vance -> goal: ensure patients with potential heart issues are identified (i.e. missing a true
case (false negative) is more dangerous than vice-versa!) [20, 30]

Table 4: Performance metrics of best classifiers per iteration (based on Acc), upsampled

No. Input Features Best Classifier Acc MAcc Se Sp

1 rms Naive Bayes 0.740 0.576 0.261 0.890
2 rms, mfcc AdaBoost 0.781 0.692 0.522 0.863
3 rms, mfcc, spectral_contrast RBF SVM 0.760 0.500 0.000 1.000

4
rms, mfcc, spectral_contrast,
zero_crossing_rate RBF SVM 0.760 0.500 0.000 1.000

5
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma Neural Net 0.776 0.682 0.500 0.863

6
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth

Gaussian Process 0.776 0.674 0.478 0.870

7

rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth,
spectral_centroid

Gaussian Process 0.786 0.696 0.522 0.870

• –> evaluate model using MAcc (Mean Accuracy, arithmetic mean of sensitivity and speci-
ficity) instead [30]:

Table 5: Performance metrics of best classifiers per iteration (based on MAcc), upsampled

No. Input Features Best Classifier Acc MAcc Se Sp

1 rms RBF SVM 0.651 0.607 0.522 0.692
2 rms, mfcc Naive Bayes 0.714 0.693 0.652 0.733
3 rms, mfcc, spectral_contrast Linear SVM 0.703 0.693 0.674 0.712

4
rms, mfcc, spectral_contrast,
zero_crossing_rate Linear SVM 0.698 0.682 0.652 0.712

5
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma Nearest Neighbors 0.708 0.682 0.630 0.733

6
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth

Decision Tree 0.698 0.690 0.674 0.705

7

rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth,
spectral_centroid

Gaussian Process 0.786 0.696 0.522 0.870
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Table 6: Performance metrics of best classifiers per iteration (based on MAcc), downsampled

No. Input Features Best Classifier Acc MAcc Se Sp

1 rms RBF SVM 0.656 0.610 0.522 0.699
2 rms, mfcc Neural Net 0.719 0.689 0.630 0.747
3 rms, mfcc, spectral_contrast Naive Bayes 0.724 0.692 0.630 0.753

4
rms, mfcc, spectral_contrast,
zero_crossing_rate Naive Bayes 0.714 0.685 0.630 0.740

5
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma

Nearest
Neighbors 0.651 0.689 0.761 0.616

6
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth

Neural Net 0.740 0.702 0.630 0.774

7

rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth,
spectral_centroid

Neural Net 0.740 0.695 0.609 0.781

Table 7: Features yielding the best performance in murmur classification and possible reasons for
this. Based on the results summarised in Table 8, rms, mfcc, and spectral_contrast demonstrated
strong performance, successfully extracting the relevant signal information to identify heartbeats
and murmurs. Other features are likely to be strongly correlated with the presented ones. This
possible correlation could be examined as a further task, given the limitations of this assignment.
Broader explanations for all examined features are given in Table 3.

Feature Explanation for good performance

rms
• proven to be strongly correlated with heart sound [19]

• captures energy variations in heart sounds, which are indica-
tive of abnormal heart functions [7]

• sensitive to intensity differences between normal and mur-
mur heartbeats, allowing to distinguish them as seen in Fig-
ure 3 and Figure 4 [28]

mfcc
• extensively used in sound signal analysis [26]

• efficient in capturing nuances in heart sounds that differenti-
ate murmurs from normal heartbeats [25]

• simulates human hearing capabilities and has performed well
in a variety of tasks in sound event detection [34]

spectral_contrast
• highlights spectral peak valleys that likely separate murmurs

from normal heart sounds in the frequency domain [44]

• used for detecting the presence of murmurs, emphasizing the
contrast between the dominant and less dominant frequen-
cies [32, 42]
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Question 3: Which classifier is yielding the best overall performance?

Table 8: Performance metrics of best classifier candidates, based on MAcc, downsampled. Ad-
aBoost exhibits the best results for the models trained without PCA, while Neural Net performs best
in the group of models trained with PCA. Nearest Neighbors with PCA shows the highest sensitivity
(most important metric in clinical settings). Choosing the best model is downstream task-dependent
and requires careful consideration of this tradeoff. Further models could/should be explored and
optimised in more depth.

No. Input Features Best Classifier Acc MAcc Se Sp

3 rms, mfcc, spectral_contrast
AdaBoost

without PCA 0.755 0.727 0.674 0.781

5
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma

Nearest Neighbors
with PCA 0.651 0.689 0.761 0.616

6
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth

Neural Net
with PCA 0.740 0.702 0.630 0.774

Question 4: What effect do individual preprocessing steps have on the final result?

Figure 29 provides an overview of the effect of individual preprocessing steps. Detailed results can
be found in Appendix B.

Figure 29: Comparison of model performance metrics across different preprocessing conditions.
The results demonstrate the significance of tackling class imbalance. Without resampling, the mod-
els show low sensitivity. High accuracy in such cases stems from high specificity and the models’
bias towards predicting the majority class (i.e. "normal heart"). Not using PCA or scaling reduces
the model performance only marginally, if at all. A detailed examination is therefore required for
these preprocessing methods. Although not visible in this diagram, due to the value aggregation,
not filtering the data generally has a negative effect on sensitivity. By omitting the filtering process,
the metrics are additionally smoothed. Please note that this Figure does not illustrate the best-
performing models and configurations but rather average performance metrics.
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Part 4: Your Own Data [10 marks]

Task 4.1 (Note: two recordings were analysed to mitigate potential recording
differences/errors)

Figure 30: First Recording of Own Heart Sound Data (time domain and frequency domain). Zoomed
x-axis.

Question 1: What differences are there between the frequency spectrums of your recording
and the files we provided? Discuss why there might be differences.

Differences:

• own recordings: seem less noisy, exhibit relatively stronger concentration of lower fre-
quencies -> majority of signal consists of frequencies < 200 Hz, contrasting provided files,
especially with murmur

• visible differences in overall amplitude (own recordings generally stronger)

• own recordings: sampling rate=48,000, cover wider frequency range

Reasons: different...

• ...physiology of recorded individual

• ...recording setup (i.e. different locations)

• ...recording device (i.e. iPhone vs. digital stethoscope [48])

• ...environment -> noise

998 words (excluding bibliography, headers, and captions)
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Figure 31: Second recording of own heart sound data (time domain and frequency domain). Zoomed
x-axis.

Figure 32: Melspectograms of heart sound recordings
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Appendices

A Best performing models based on an evaluation of Sensitivity measures

Table 9: Performance metrics of best classifiers per iteration (based on Sensitivity), downsampled.
Although the sensitivity values are notably high, values for Accuracy, MAcc, and Specificity are
not. This underscores the importance of a balanced performance assessment of classifiers against
the requirements of the downstream task in the context of the application.

No. Input Features Best Classifier Acc MAcc Se Sp

1 rms Nearest Neighbors 0.552 0.549 0.543 0.555
2 rms, mfcc RBF SVM 0.385 0.536 0.826 0.247
3 rms, mfcc, spectral_contrast RBF SVM 0.271 0.498 0.935 0.062

4
rms, mfcc, spectral_contrast,
zero_crossing_rate RBF SVM 0.281 0.505 0.935 0.075

5
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma Nearest Neighbors 0.651 0.689 0.761 0.616

6
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth

Nearest Neighbors 0.641 0.667 0.717 0.616

7

rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth,
spectral_centroid

Nearest Neighbors 0.641 0.667 0.717 0.616

B Detailed results for the performance of models under different preprocessing conditions

Table 10: Performance metrics of best classifiers per iteration, based on MAcc, without resampling.
The results clearly indicate the effect of the imbalanced dataset. Without resampling, the highest
sensitivity stands at 50%, while a Specificity of up to 96% is reached. In this case, the models
are heavily biased towards predicting the majority class (i.e. non-murmur). This underscores the
significance of tackling class imbalance in medical datasets.

No. Input Features Best Classifier Acc MAcc Se Sp

1 rms QDA 0.771 0.574 0.196 0.952
2 rms, mfcc Nearest Neighbors 0.797 0.688 0.478 0.897
3 rms, mfcc, spectral_contrast Decision Tree 0.807 0.642 0.326 0.959

4
rms, mfcc, spectral_contrast,
zero_crossing_rate AdaBoost 0.781 0.648 0.391 0.904

5
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma Nearest Neighbors 0.807 0.702 0.500 0.904

6
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth

Nearest Neighbors 0.786 0.681 0.478 0.884

7

rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth,
spectral_centroid

Nearest Neighbors 0.792 0.684 0.478 0.890
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Table 11: Performance metrics of best classifiers per iteration, based on MAcc, downsampled,
without filtering. Not filtering the audio signal has a substantial negative effect on Sensitivity.

No. Input Features Best Classifier Acc MAcc Se Sp

1 rms RBF SVM 0.688 0.616 0.478 0.753
2 rms, mfcc Linear SVM 0.745 0.683 0.565 0.801
3 rms, mfcc, spectral_contrast Linear SVM 0.771 0.715 0.609 0.822

4
rms, mfcc, spectral_contrast,
zero_crossing_rate Linear SVM 0.745 0.691 0.587 0.795

5
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma Gaussian Process 0.750 0.709 0.630 0.788

6
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth

Gaussian Process 0.740 0.695 0.609 0.781

7

rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth,
spectral_centroid

Gaussian Process 0.750 0.709 0.630 0.788

Table 12: Performance metrics of best classifiers per iteration, based on MAcc, downsampled,
without Scaling, with PCA. Without scaling the features, the performance slightly decreases when
compared to the best-performing models. Still, the effect is relatively small, and the results are still
comparably competitive.

No. Input Features Best Classifier Acc MAcc Se Sp

1 rms Neural Net 0.693 0.597 0.413 0.781
2 rms, mfcc Naive Bayes 0.708 0.704 0.696 0.712
3 rms, mfcc, spectral_contrast QDA 0.719 0.711 0.696 0.726

4
rms, mfcc, spectral_contrast,
zero_crossing_rate QDA 0.719 0.711 0.696 0.726

5
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma QDA 0.719 0.711 0.696 0.726

6
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth

Naive Bayes 0.693 0.694 0.696 0.692

7

rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth,
spectral_centroid

AdaBoost 0.698 0.697 0.696 0.699
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Table 13: Performance metrics of best classifiers per iteration, based on MAcc, downsampled,
without PCA. While not applying PCA seems to generally hurt accuracy, there seems to be no major
decline in MAcc, Sensitivity and Specificity. In fact, the AdaBoost model in iteration 3 performs
comparably well.

No. Input Features Best Classifier Acc MAcc Se Sp

1 rms RBF SVM 0.661 0.614 0.522 0.705
2 rms, mfcc Gaussian Process 0.745 0.698 0.609 0.788
3 rms, mfcc, spectral_contrast AdaBoost 0.755 0.727 0.674 0.781

4
rms, mfcc, spectral_contrast,
zero_crossing_rate AdaBoost 0.755 0.727 0.674 0.781

5
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma Naive Bayes 0.740 0.695 0.609 0.781

6
rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth

AdaBoost 0.724 0.722 0.717 0.726

7

rms, mfcc, spectral_contrast,
zero_crossing_rate, chroma,
spectral_bandwidth,
spectral_centroid

AdaBoost 0.724 0.722 0.717 0.726
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