
HI! Paris Technical Test Notes
Tim Luka Horstmann

Code: code_TimLukaHorstmann.ipynb
Experiments: https://wandb.ai/tlh45/HIParis

Approach
This project aims to develop a computer vision (CV) model capable of detecting fire-related
objects in images. The dataset consists of historical fire images taken from towers within
different forests and labeled with fire locations. This project's ultimate (practical) goal is to
support the (real-time) early fire detection efforts of the French firefighters.

As a starting point for this project, I created a subset of the original dataset, which only
contains 10% of the original data to enable efficient training in a limited resource
environment. To quickly reach strong results, I rely on the newest model of the YOLO
architecture (YOLO11) - a series of real-time object detection models providing
state-of-the-art (SOTA) performance on many object detection tasks. As computing
hardware, Google Colab’s T4 GPU is employed. Since work is conducted in the Colab cloud
environment, I chose wandb (after initial experiments with MLFlow) for experiment tracking
to provide a simpler integration into the cloud setting.

For most tasks, I leveraged the functions provided by the YOLO library while explainability
functionality was achieved via pytorch-grad-cam. The latter required the development of a
wrapper model around the fine-tuned/custom YOLO model to extract the activations from the
specified target layer of the underlying YOLO model. Grad-CAM can then be used to
visualize the parts of the image relevant to the specified layer during inference.

Two “yolo11n” models were fine-tuned on the provided dataset, with training for 50 and 100
epochs respectively. For this initial task, I simply saved the final model. In a real-world
setting (i.e. with more time for the project), I would not only save the best model based on a
validation metric but also experiment with different architectures and hyperparameters (see
below). An analysis of the validation losses (box, cls, and dfl) during training as well as the
performance of the model on the validation dataset after training reveals a similar
performance for both models. It should be noted that the models display higher precision
than recall, suggesting that they perform well in making accurate predictions once smoke is
detected but struggle to identify all instances of smoke (wildfires). Increasing the dataset size
would likely help improve the recall of the model by providing more diverse training samples.

What would I do if I had one month to work on the project?
If I had one month to work on this project, I would work on expanding its scope, focus on
improving the performance of the object detection model, and set up an end-to-end
deployment pipeline to enable usage of the model in real life (i.e. provide the French
firefighters with the technical means to automatically detect fires using the YOLO model).
The specific details of what should be achieved are detailed in the annex.

https://colab.research.google.com/drive/1YHZ3t1HF2IgCF74kVfxOS4Bm1fEzCCi0?usp=sharing
https://wandb.ai/tlh45/HIParis
https://docs.ultralytics.com/models/yolo11/
https://wandb.ai/
https://mlflow.org/


Annex:
Selected tasks I would work on if I had one month to work on the project

1. Longer training:
Instead of limiting myself to specific training durations, I would experiment with
different training regimes. For instance, extended training (i.e. more training epochs)
should be evaluated.

2. More data:
For this task, I have limited myself to using only 10% of the original dataset. As I
expect the usage of more training data to significantly improve the performance of
the model, I would work with the full dataset or maybe even introduce additional
custom data augmentation to potentially improve robustness and overall
performance. This also depends on the model architecture used as models like
YOLO, for example, inherently execute data augmentation steps.

3. Model architecture & improvements:
Instead of solely relying on YOLO, I would conduct further research into current
SOTA models for (real-time) object detection. Architectures like EfficientDet, Faster
R-CNN, or RetinaNet could be explored.
Additionally, it would be important to execute a proper hyperparameter optimization
(HPO). While I implemented this code roughly in the notebook, I refrained from
executing a full HPO due to its computational requirements. Here, I would focus on
experimenting with different hyperparameters such as batch_size, learning_rate, and
others that typically have a major impact on model performance.

4. Deployment:
Instead of solely developing and testing the model in a research environment, I would
consider implementing an end-to-end deployment pipeline and deploying the model
for actual firefighter usage. This would not only provide the real-world benefit of
helping the French firefighters but also reveal the strengths and weaknesses of the
model in a real-world environment. This might prompt further engineering tasks and
challenges such as real-time inference optimizations, working with edge devices in
forests, latency, and limited bandwidth in remote forests.


