
Development and Evaluation of a Custom-Built
Abstractive Summarisation System

L90 - Practical 03

Tim Luka Horstmann
Computer Laboratory

University of Cambridge
tlh45@cam.ac.uk

https://github.com/TimLukaHorstmann/L90_tlh45_exercise3
Word Count: 3541/4000

Abstract

Summarisation is a core discipline of NLP with strong practical relevance. This
report presents the development and evaluation of a custom-built abstractive sum-
marisation system (ASS) using the CNN/Daily Mail data set. Based on a Trans-
former model, this work explores various summarisation strategies and highlights
the challenges in generating coherent and meaningful summaries using ASS. Fol-
lowing a thorough hyperparameter optimisation, the performance of the ASS is
qualitatively and quantitatively evaluated through ROUGE metrics. A comparison
with the previous practical’s extractive summarisation system and baseline models
reveals substantial limitations and suggests directions for further research, such
as training larger models with more data, further analysing and optimising the
Transformer, and exploring other machine learning techniques. This work helps to
shed light on the challenges of developing effective ASS.

1 Introduction

Nowadays, the internet and digitisation have led to the production of information at an unprecedented
speed [10]. This has intensified the need for systems that can efficiently condense text into concise
pieces without losing relevant information. Summarisation, a key task in Natural Language Processing
(NLP) within Machine Learning (ML), seeks to address precisely this problem. Due to its practical
relevance with applications in various domains, summarisation has become a significant area of
research in NLP and brought forward numerous tools to address the outlined challenges [6].

There are two major categories in which summarisation tools can be classified: extractive summari-
sation and abstractive summarisation [10]. Table 1 provides a comparative analysis of these two
standard summarisation techniques and describes their strengths and weaknesses.

While the second NLP practical examined a custom-built Extractive Summarisation System (hereafter
ESS), this report delves into building and assessing a custom-built Abstractive Summarisation System
(hereafter ASS) which aims at summarising news articles. Just like before, a subset of the CNN/Daily
Mail data set1, containing 10,000 articles with summaries for training and 1,000 pairs for both
validation and testing, will be used for the development of the ASS. As this is the same data set
used in the last practical, its characteristics will not be explicitly outlined again. The ASS’s code is
accessible on Github2.

1https://huggingface.co/datasets/cnn_dailymail
2https://github.com/TimLukaHorstmann/L90_tlh45_exercise3

https://github.com/TimLukaHorstmann/L90_tlh45_exercise3
https://huggingface.co/data sets/cnn_dailymail
https://github.com/TimLukaHorstmann/L90_tlh45_exercise3

Category Extractive Summarisation Abstractive Summarisation
Approach Select most relevant coherent (exist-

ing) parts from text (e.g., sentences)
and combine them [10].

Generate new text (e.g., using
new words and rephrasing original
text) [10].

Analogy Highlighter: underscore the most
relevant parts of a text.

Human-like: generate a summary
word by word.

Strengths Preserves original phrasing. Often
higher accuracy. Faster and simpler
to implement. [1]

Can be more coherent and concise.
More flexible. [1]

Weaknesses Not human-like. Less flexible. [1] Difficult to implement. Less accu-
rate. Computationally intensive. [1]

Table 1: Comparison of extractive and abstractive summarisation.

2 The Custom-built Abstractive Summarisation System

Deep Learning (DL) methods — ML techniques based on large neural networks — have recently
found extensive application in the context of ASS [10]. Although many DL-based ASS have been
developed, all of these rely on an Encoder-Decoder architecture [10]. Given that these sequence-to-
sequence (Seq2Seq) models, which convert an input sequence into an output sequence, performed
well in tasks similar to the one at hand [1], this report also opted for such an approach.

Based on the architecture for an ASS proposed by El-Kassas et al. [1], a custom-built ASS was
developed, utilising a Transformer model for natural language generation. The custom ASS pipeline,
shown in Figure 1, was implemented in Python using the PyTorch3 DL library.

Article

Pre-Processing Post-Processing

Summary

abstractive_summarizer.py

Encoder

Decoder

1 1

2 2

3

4

5

6

Fully Connected Layer

transformer.py

Figure 1: Simplified architecture of the custom-built ASS for article summarisation. Based on [1, 8]

In the following, the different components forming the ASS will be explained. First, a summary of
the characteristics of the Transformer model will be given, followed by a description of the enclosing
"abstractive summarizer" architecture that utilises the Transformer model.

3https://pytorch.org/

2

https://pytorch.org/

2.1 Transformer Model

The Encoder-Decoder-based Transformer architecture by Vaswani et al. [8] mitigates a crucial
problem standard Encoder-Decoder architectures typically face [5]. Although these models often
rely on long short-term memory (LSTM) networks — a form of Recurrent Neural Network (RNN)
allowing Seq2Seq-models to work with longer sequences — they usually struggle with retaining
information of words that appeared early on in long sequences [10]. The Transformer model efficiently
implements Attention to retain the input values, eliminating the need for LSTMs or recurrence [5, 8].

2.1.1 Encoder

1 Word Embedding and 2 Positional Encoding
To prepare the input for the Encoder, the tokenized input is mapped to IDs based on a specified
vocabulary and then transformed into vectors of size dmodel (default: dmodel = 512) that capture each
token’s semantic meaning and context through Word Embedding [8]. Furthermore, the Transformer
requires a technique to keep track of the token order. For this, the Transformer relies on positional
encoding through alternating Sine and Cosine functions [8]. The positional encodings are of the same
size as the embeddings, dmodel, so that they can easily be summed [8], as shown in Figure 2.

Input
Embedding

1

x0 x1 x... xn_token-1

...
e0 en_token-1e...e1
+

...

Inputs

Positional
Encoding

p0 pn_token-1p...
...

p1

+ + +

2
...

ep1

= = = =

epn_token-1
...

ep0 ep...
dmodel=512

dmodel=512

dmodel=512

Figure 2: Summation of word embeddings and positional encoding. Based on [2]

3 Self-Attention (Sub-layer I)

Following encoding, the Transformer calculates Scaled Dot-Product Attention values, a form of
Self-Attention. Self-Attention allows the model to establish relationships among the tokens and thus
give context to each word [5]. The main idea is to calculate how similar each token is to all the tokens
in the sequence (including itself) to determine how to encode each word [8]. Several layers of this
unit, called Attention Head, can be formed to capture different relationships among words and enable
Multi-Head-Attention. By default, eight heads (nhead = 8) are employed [8].

4 Feed-Forward Network (Sub-layer II), Residual Connections, and Add & Norm
A simple feed-forward network is added on top of the first sub-layer to generate the Encoder’s
output [8]. Finally, Residual Connections are added around both sub-layers to ensure that prior
information is not lost inside either of the two layers [8]. This is achieved by adding input values x to
the sub-layer outputs and normalising them: LayerNorm(x+ Sublayer(x)) [8].

2.1.2 Decoder

As the Decoder has two inputs, this section is limited to explaining the two components distinguishing
the slightly more complex Decoder from the Encoder. All sub-layers in the Decoder are enhanced
with residual connections [8].

5 Masked Multi-Head Attention
Enabling the auto-regressive prediction behaviour of the Transformer model requires forcing the
model to only attend to previous tokens to calculate its predictions because, during inference, the
model cannot access future tokens as it predicts them sequentially. This is ensured by generating a
square mask that sets the upper triangle of values to −∞, which is applied to the input of the SoftMax
function inside the first Multi-Head-Attention layer of the decoder [8].

3

6 Encoder-Decoder Attention
The Decoder possesses a second Multi-Head Attention layer to connect the Encoder with the De-
coder [8]. This layer enables the Transformer to establish a relationship between the input and output
sequence, thereby retaining the original sequence’s (here: article) semantics [8].

It is important to note that, similar to the concept of attention heads, the whole Encoder layer and
the Decoder layer, can be stacked and computed in parallel to capture more complex relationships
between tokens. Additionally, the dropout technique is commonly used to randomly set neurons to
zero during training and counteract overfitting [8].

2.1.3 Fully Connected Layer - Generation of Output Probabilities

Like many other sequence transduction models, the Transformer employs a simple linear network
mapping the final Decoder’s output of dimension dmodel to the size of the vocabulary by a learnable
weight. This fully connected layer outputs logits, which are subsequently run through a SoftMax
function to obtain the final predictions. These can be interpreted as probabilities for each token in the
vocabulary and, therefore, be used to pick the most probable next token at each prediction step [8].

2.1.4 Implementation of the ASS Transformer

The custom-built ASS’s Transformer employs PyTorch’s nn.Transformer implementation and is
realised in the transformer.py script. While the implementation uses PyTorch’s default nn.Embedding
class to create the word embeddings and nn.Linear as the Fully Connected Output Layer, the Positional
Encodings are calculated in a custom class. Masks are created in the Transformer’s forward() method
to either enable disregarding of padding tokens or support Masked Multi-Head Attention. In this
custom implementation, the final output is not directly converted into probabilities using a SoftMax
function. Instead, logits are returned, which are only adjusted later in the ASS.

2.2 Abstractive Summarizer

The Abstractive Summarizer component of the ASS displays the entry point for the system and is
called by run_abstractive_summarizer.py. As shown in Figure 1, this part of the ASS fundamen-
tally consists of three different logical units implemented in the abstractive_summarizer.py script:
preprocessing, interacting with the Transformer, and postprocessing.

I - Tokenization

The child was held.

The child was held

II - Create Vocabulary

III - PAD/Truncate & Convert to ID

EOS

The child was held EOS

The child was held EOS PAD PAD

103 45 23 345 1 999 999

IV - Teacher Forcing (summaries only)

103 45 23 345 1 999 999

103 45 23 345 1 999

The child was held EOS PADEOS

1

Figure 3: The custom preprocessing pipeline of the ASS. Image by Author

The custom-built ASS allows the user to choose between using the BERT Tokenizer4 and its corre-
sponding vocabulary or creating a custom vocabulary through the NLTK tokenizer5. Depending on
this choice, preprocessing details differ. Figure 3 visualises the preprocessing pipeline of the ASS.

1. Tokenization: The text (article or summary) is split into tokens. An additional End Of
Sequence (EOS) token is added at the end of each sequence.

2. Create Vocabulary (optional): If a custom vocabulary is selected, tokens are collected and
numbered. Tokens can be added to the vocabulary based on a specified frequency threshold.

3. Pad/Truncate & Convert to ID: Each text is truncated or padded with extra tokens to their
predefined maximum length. Due to the distinct nature of the input (articles) and output
(summaries), the maximum token length was set at 2048 for articles and 128 for summaries.
An analysis of the given training data, shown in Appendix A (Figure 6), validated that

4https://huggingface.co/docs/Transformers/model_doc/bert
5https://www.nltk.org/api/nltk.tokenize.html

4

https://huggingface.co/docs/Transformers/model_doc/bert
https://www.nltk.org/api/nltk.tokenize.html

these settings would cover the entire length of around 98% of given texts while optimising
memory usage.

4. Teacher Forcing: The token IDs of the summaries are right-shifted. This is necessary to
enable the later auto-regressive prediction behaviour of the Transformer by imitating it
during training. In contrast to inference, however, during training, the original subsequent
token is always used as the next input token — a technique known as teacher forcing.

The training of the Transformer model is executed in a conventional training loop using PyTorch’s
optimisation algorithms6. Specifically, Adam is employed as optimiser, and ReduceLROnPlateau as
learning rate scheduler. Helper functions allow the validation score to be calculated as cross-entropy
loss or ROUGE score. Additionally, a reduced training method for debugging (train_to_overfit())
was implemented. This method tests whether the Transformer can purposely overfit.

Generate

Greedy

Top P

Top K

Temperature Sampling

Beam Search

0.01 ... -0.003

Decode

0.01 ... -0.003 0.4 ... 0.2

Transformer

103 45 23 345

0.01 ... -0.003 0.01 ... -0.003 0.4 ... 0.2

...

"The child was held"

The child was held

Figure 4: The custom postprocessing pipeline of the ASS. Image by Author

After training, to generate a summary (e.g., using predict()), the corresponding article must first be
converted through reduced preprocessing by calling the tokenize_text() and pad_and_convert_to_ids()
methods (see Figure 3). Subsequently, model predictions are generated using one of multiple possible
strategies encapsulated in a designated Generator class. Thresholds can be defined to enforce desired
minimum and maximum length constraints for the summary. After the Transformer has calculated
predictions, the generated list of token IDs is postprocessed to transform the token IDs back into
words and generate a contiguous summary. The complete prediction process is shown in Figure 4
and indicates the five different generation strategies implemented in the Generator class:

1. Greedy: at each step, select the token with the highest probability as the next token
2. Beam Search: keep track of beam_width hypothesis summaries. In the end, select the best

summary out of these hypotheses.
3. Temperature sampling: at each step, sample from the returned probability distribution.

A temperature value can be introduced to adjust the probability distribution and miti-
gate the generation of incoherent text, as described by Holtzman et al. [4]. For example,
temperature < 1 can be set to increase the likelihood of high-probability tokens, thereby
preventing extraordinarily unlikely tokens from appearing in the predicted summary.

4. Top-K: at each step, choose the K most likely next tokens and redistribute the probability
mass among them before selecting the next token [3].

5. Top-P: at each step, find the smallest subset of tokens that have a combined probability
greater than P and redistribute the probability mass among them before picking the next
token [4]. In contrast to Top-K, this method accounts for the number of tokens to consider.

All five generation strategies, as well as the model’s hyperparameters, were exhaustively tested
in the context of this practical to identify the best-performing model. For this purpose, a custom
hyperparameter search function with an associated objective (i.e., a simplified training loop) was
implemented based on the hyperparameter optimisation (HPO) framework Optuna7.

6https://pytorch.org/docs/stable/optim.html
7https://optuna.org/

5

https://pytorch.org/docs/stable/optim.html
https://optuna.org/

3 Generating Summaries and Qualitative Analysis

After training, the ASS can be used to generate summaries as described in Section 2.2. As a precursor,
train_to_overfit() was executed to train the model for 100 epochs on a small data set of five articles.
The model successfully reproduced the original summaries, indicating effective implementation.
Further manual model analysis was conducted via TensorBoard integrated in the ASS. Subsequently,
the ASS (after HPO) was tasked with generating summaries for an unseen set of five news articles
extracted from the NBC and BBC news websites. These articles and their sources can be found in
custom_example.json and were already used in the second practical to evaluate the developed ESS.
Table 2 provides an exemplary overview of the summaries the ASS generated for these articles.

Generation
Strategy Selected custom examples, unseen by the model

Greedy Article: A man with a rifle was arrested in a park near Senate office
buildings across from Union Station in Washington on Tuesday, according
to U.S. Capitol Police [...]

Summary: new : the u. s. s. s. the u. the u. the u. the u. the u. [...]

Beam Search Article: A war memorial is being guarded by police [...]

Summary: the couple of his wife and a friend. the dog had been a new
jersey, a new jersey, a new jersey and the attack .

Temp. Sampling Article: A murder investigation has been launched after a 15-year-old
boy was stabbed [...]

Summary: study shows a motion to the 665 - year - old in theingham in
the u. s. these it will be a big - a second.

Top-K Article: A man with a rifle was arrested [...], according to U.S. Capitol

Police , who said there is no reason to believe there is an ongoing threat .
[...] Capitol Police Chief Thomas Manger identified the suspect [...]

Summary: police chief of the victim of the attack, an attack , california,

california, the police.

Top-P Article: Researchers say they have trained artificial intelligence [...]

Summary: supplies accused of reliefblyor have been jailed for 876nki
learned , 000 scientists .[...]

Table 2: Comparison of the different ASS generation strategies based on exemplary news articles.

Examining the summaries the ASS generated for the above articles, it is apparent that the model
struggles to provide meaningful, coherent summaries. In particular, the following types of error can
be identified from this qualitative analysis:

• Repetitions: For all five examples, the summary is mostly nonsensical and repetitive — a
typical phenomenon in neural Seq2Seq models [6]. Particularly the generation methods
"greedy" and "beam search" seem to suffer from this problem, repeating "the u. (s.)" or
"new jersey" multiple times, which is behaviour backed by contemporary research [9].

• Hallucinations: All examples illustrate cases of hallucination. The ASS fabricates words
that are unrelated to the article. For example, the beam search-generated summary contains
the word "dog", which does not appear in the source article.

• Factual Inaccuracies: Related to producing incoherent summaries, the model also reveals
clear difficulties in accurately adopting facts. For example, in the third example, "15-year-
old" is turned into "665-year-old".

6

Although the generated summaries shown in Table 2 are not meaningful, they indicate that the ASS
was partially able to capture the semantics of the corresponding articles. These (potential) semantic
relationships are highlighted in grey . For example, in the case of the fourth example, the ASS
accurately identified the article as pertaining to a police operation and additionally referenced the
police chief mentioned in the article. Furthermore, semantically related words, such as "victim" or
"attack" were predicted.

4 Model Evaluation

4.1 Numerical Analysis

The numerical analysis of the ASS was carried out in two steps. First, the hyperparameters of the
Transformer model were optimised through the Optuna HPO implementation presented in Section 2.2.
Secondly, the ASS was quantitatively evaluated in different configurations based on unseen test data.

To accurately optimise a sufficient combination of hyperparameters in an efficient manner, the
Optuna HPO implementation was run based on a Tree-structured Parzen Estimator (TPE) algorithm
as sampler in combination with a MedianPruner to stop likely worse trials early. The following
hyperparameters were tested (for all other parameters, default values were kept):

• d_model: The dimensionality of the model, with options of 128, 256, and 512.

• nhead: The number of (multi-)attention heads, with options of 4 and 8.

• num_encoder_layers: The number of Encoder layers, integer values ranging from 1 to 4.

• num_decoder_layers: The number of Decoder layers, integer values ranging from 1 to 4.

• dropout: The dropout rate, float values varying from 0.1 to 0.5.

• lr: The learning rate, float values in the range from 1e-5 to 1e-2 using logarithmic scaling.

Due to GPU computing power limitations, the HPO was limited to explore 100 distinct hyperparameter
combinations. Figure 5 shows the normalised cross-entropy loss on the validation data (as given in
validation.json) as a performance score per hyperparameter for each of the 100 individual trials, with
lower scores reflecting better model performance.

200 400
dim_model

2.5

5.0

7.5

10.0

Pe
rf

or
m

an
ce

 S
co

re

4 6 8
nhead

1 2 3 4
num_encoder_layers

1 2 3 4
num_decoder_layers

2.5

5.0

7.5

10.0

Pe
rf

or
m

an
ce

 S
co

re

0.2 0.4
dropout

0.000 0.005 0.010
lr

Figure 5: Results of the HPO using Optuna.

The following combination of hyperparameters yielded the best results (highlighted as a red star in
Figure 5): d_model = 256, nhead = 4, num_encoder_layers = 1, num_decoder_layers = 2,

7

dropout ≈ 0.23426, lr ≈ 0.00135. The HPO suggests that for this practical, a Transformer model
with reduced complexity outperforms the default version [8].

The performance of the ASS post-HPO was subsequently evaluated based on the unseen test data in
test.json, calculating ROUGE scores for the test data and recording Precision (P), Recall (R), and
F1 Score (F1) per ROUGE category. Summaries were generated using both the Transformer model
with default parameters ("Base") and the optimised model. Additionally, a model with identical
hyperparameters was trained on a data set ten times larger to assess the impact of data volume on
performance. The corresponding training and validation loss trends are detailed in Appendix A
(Figure 7). All generation strategies were explored. The results of this analysis are documented in
Table 3.

ROUGE-1 (in %) ROUGE-2 (in %) ROUGE-L (in %)

Model
Gen.

Strategy P R F1 P R F1 P R F1

Increased
training data

100k

Greedy 15.79 10.56 12.66 1.68 1.10 1.33 14.77 9.85 11.82
Beam 16.84 8.82 11.58 1.39 0.76 0.98 15.85 8.04 10.67
Sampling 17.29 12.40 14.45 1.43 1.05 1.21 15.27 10.93 12.74
Top-K 17.43 13.73 15.36 1.43 1.12 1.25 15.19 11.93 13.37
Top-P 13.76 11.54 12.55 0.62 0.53 0.57 11.67 9.77 10.64

Transformer
after HPO

10k

Greedy 12.16 5.88 7.93 0.92 0.40 0.56 11.74 5.66 7.63
Beam 25.52 6.64 10.54 2.44 0.67 1.06 23.73 6.18 9.81
Sampling 15.37 9.25 11.55 1.01 0.62 0.76 13.90 8.34 10.43
Top-K 15.88 9.57 11.95 0.92 0.56 0.70 14.32 8.59 10.73
Top-P 11.55 10.35 10.92 0.34 0.33 0.33 9.99 8.84 9.38

Base
Transformer

10k

Greedy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Beam 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sampling 19.27 7.18 10.46 0.26 0.11 0.16 17.50 6.42 9.40
Top-K 26.63 6.02 9.82 0.49 0.12 0.19 24.80 5.59 9.12
Top-P 10.62 8.36 9.36 0.06 0.04 0.05 9.34 7.17 8.11

Table 3: ROUGE performance metrics for different models and generation strategies.
The best F1 score per ROUGE category is highlighted in bold. Note: As the ROUGE-4 score of
almost all models for all generation methods is close to 0, these values are not depicted.

The numerical analysis reveals numerous insights. Since the post-HPO model achieves better F1
scores across all generation strategies than the base Transformer model, the quantitative analysis
confirms the hypothesis that a simple Transformer model generally generates better summaries for the
given task when comparing ROUGE scores. Furthermore, using more training data seems to positively
affect performance on unseen data. Although "Greedy" and "Beam" achieved higher ROUGE-2 F1
scores, sampling methods and especially "Top-K" are overall more effective in generating diverse and
relevant summaries, rendering the Transformer after HPO 10k, Top-K model the best configuration
in the context of this practical. The fact that the base model was not able to generate considerable
ROUGE scores for the "Greedy" and "Beam" generation strategies also highlights the importance of
HPO for the development of the ASS in the context of this practical. Still, an unoptimised model
trained on more data outperforms the smaller optimised model, suggesting that the volume of available
training data represents a critical factor for the performance of an ASS.

Overall, it is striking that while the models seem to perform well on capturing individual words (as
indicated by ROUGE-1 scores showing the overlap of unigrams between original and generated
summary), there is a significant drop in performance when comparing bigrams (ROUGE-2). An
overlap of 4-grams (ROUGE-4) cannot even be discerned. This suggests that the model is unable
to adequately capture longer phrase and sentence structures. However, when discussing the ASS’s
performance based on ROUGE, it should be considered that the HPO minimised the defined loss
objective, which does not necessarily optimise the ROUGE score performance of the model [6].
Hence, other model configurations might yield better ROUGE scores and should be explored further.

8

4.2 Abstractive Approach vs. Extractive Approach

To better illustrate the differing approaches of ASS and ESS, it is useful to compare the summaries
generated by each for an exemplary article. Table 4 revisits an article from Table 2 and contrasts the
summaries generated by the best ASS (Transformer after HPO 10k, "Top-K") and ESS, respectively.

Type Text
Article A man with a rifle was arrested in a park near Senate office buildings across from

Union Station in Washington on Tuesday, according to U.S. Capitol Police, who said
there is no reason to believe there is an ongoing threat. [...] Capitol Police Chief
Thomas Manger identified the suspect as Ahmir Lavon Merrell, 21, of Atlanta.[...]

ESS
Summary S. Officers were seen sprinting to the Capitol, followed by reporters, some of whom

were not allowed to leave. More than half a dozen law enforcement vehicles responded.
[. . .]

ASS
Summary police chief of the victim of the attack, an attack, California, California, the police.

Table 4: Qualitative comparison of the summarisation systems developed in the NLP practicals.

The qualitative comparison vividly demonstrates that ESS summaries preserve the original phrasing
and often achieve higher accuracy than ASS, due to their reconstructive character. Except for the first
"sentence" generated by the ESS – which only consists of "S." – this also underlines why the ESS
summaries are considerably more coherent and meaningful for the given task.

A ROUGE score-based comparative analysis of the ESS and ASS along with Lead-3 and Random-3
as baseline, as previously detailed in the second practical, reveals that the ASS did not outperform
any of these models. The results recorded in Table 5 display that the ASS’s performance is worse
across all ROUGE categories. Since the ASS was not able to achieve considerable ROUGE-4 scores,
a comparison was refrained from for this category. Furthermore, it is notable that the ASS recall
scores are worse than the precision scores (although both are low). This indicates that the ASS is
even less capable of capturing relevant content from the article than generating accurate summaries.
For the ESS and other models, however, these scores are more balanced.

ROUGE-1 (in %) ROUGE-2 (in %) ROUGE-L (in %)

Model P R F1 P R F1 P R F1

Lead-3 32.0 45.0 38.0 13.0 19.0 15.0 27.0 38.0 31.0

ESS: Logistic Regression
(Lead-3) 29.0 34.0 31.0 9.0 11.0 10.0 24.0 28.0 26.0

Random-3 (Baseline) 26.0 29.0 28.0 7.0 8.0 7.0 22.0 25.0 23.0

ASS: Transformer
after HPO 10k, Top-K 15.88 9.57 11.95 0.92 0.56 0.70 14.32 8.59 10.73

Table 5: Quantitative comparison of the ASS, ESS, Random-3 (baseline) and Lead-3 model.

Overall, the comparative quantitative analysis indicates the limitations of ASS, which are findings
consistent with existing literature. Other studies found similar challenges, especially if access to
highly-capable computational resources and computation time were constraints [7], and it was noted
that many challenges of developing ASS remain unsolved [10].

9

5 Conclusion and Future Work

In this practical, a Transformer-based abstractive summarisation system (ASS) was developed for
the CNN/Daily Mail data set, incorporating preprocessing and postprocessing steps. Five different
strategies to generate summaries were evaluated. Regardless of the strategy chosen, the ASS was
capable of partially capturing relevant semantics but overall struggled to create meaningful summaries
on unseen test data. Following a thorough hyperparameter optimisation, Top-K emerged as the most
suitable generation strategy. Compared to the extractive summarisation system (ESS) developed in the
last practical as well as the Lead-3 model and Random-3 model as baseline, the ASS underperformed.
Accurate abstractive summarisation remains a significant challenge in NLP.

This practical suggests several directions for future research, such as training Transformer models on
more than the 3% of CNN/Daily Mail data used, which could improve performance but would require
advanced hardware. Furthermore, it may be helpful to analyse the Transformer’s attention weights to
understand which tokens are relevant for predicting certain combinations of text. Building on this,
further model refinements could be introduced, such as n-gram penalties to avoid repetitive outputs,
a more extensive HPO including additional hyperparameters and more combinations, or potential
architectural changes (e.g., hybrid summarisation techniques combining extractive and abstractive
approaches). Exploring other ML strategies for natural language generation is also recommended.

References
[1] W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed. Automatic text summarization:

A comprehensive survey. Expert Systems with Applications, 165:113679, Mar. 2021. ISSN
0957-4174. doi: 10.1016/j.eswa.2020.113679. URL https://www.sciencedirect.com/
science/article/pii/S0957417420305030.

[2] K. Elhariri. The Transformer Model, Mar. 2022. URL https://towardsdatascience.com/
attention-is-all-you-need-e498378552f9.

[3] A. Fan, M. Lewis, and Y. Dauphin. Hierarchical Neural Story Generation, May 2018. URL
http://arxiv.org/abs/1805.04833. arXiv:1805.04833 [cs].

[4] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The Curious Case of Neural Text
Degeneration, Feb. 2020. URL http://arxiv.org/abs/1904.09751. arXiv:1904.09751
[cs].

[5] Y. Kim, C. Denton, L. Hoang, and A. M. Rush. Structured Attention Networks, Feb. 2017. URL
http://arxiv.org/abs/1702.00887. arXiv:1702.00887 [cs].

[6] R. Paulus, C. Xiong, and R. Socher. A Deep Reinforced Model for Abstractive Summarization,
Nov. 2017. URL http://arxiv.org/abs/1705.04304. arXiv:1705.04304 [cs].

[7] V. Vasavada and A. Bucquet. Just News It: Abstractive Text Summarization with a Pointer-
Generator Transformer. 2019. URL https://web.stanford.edu/class/archive/cs/
cs224n/cs224n.1194/reports/custom/15720251.pdf.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention Is All You Need, Aug. 2023. URL http://arxiv.org/abs/1706.
03762. arXiv:1706.03762 [cs].

[9] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun, S. Lee, D. Crandall, and D. Batra.
Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models, Oct. 2018.
URL http://arxiv.org/abs/1610.02424. arXiv:1610.02424 [cs].

[10] M. Zhang, G. Zhou, W. Yu, N. Huang, and W. Liu. A Comprehensive Survey of Abstractive
Text Summarization Based on Deep Learning. Computational Intelligence and Neuroscience,
2022:7132226, Aug. 2022. ISSN 1687-5265. doi: 10.1155/2022/7132226. URL https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC9359827/.

10

https://www.sciencedirect.com/science/article/pii/S0957417420305030
https://www.sciencedirect.com/science/article/pii/S0957417420305030
https://towardsdatascience.com/attention-is-all-you-need-e498378552f9
https://towardsdatascience.com/attention-is-all-you-need-e498378552f9
http://arxiv.org/abs/1805.04833
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1702.00887
http://arxiv.org/abs/1705.04304
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/reports/custom/15720251.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/reports/custom/15720251.pdf
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1610.02424
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359827/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359827/

Appendices

A Additional Figures

0 500 1000 1500 2000 2500
Number of Tokens

0

200

400

600

800

Fr
eq

ue
nc

y

98th Percentile
≈2048 Tokens

Article Token Counts

0 200 400 600 800 1000 1200
Number of Tokens

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

98th Percentile
≈128 Tokens

Summary Token Counts

Figure 6: Distribution of the total number of tokens per article/summary in train.json. Image by
Author

2 4 6 8 10 12 14 16
Epoch

3

4

5

6

7

8

Lo
ss

10k Default

Training Loss
Validation Loss

1 2 3 4 5 6 7 8 9
Epoch

3

4

5

6

7

8
10k Optimized

Training Loss
Validation Loss

2 4 6 8 10
Epoch

3

4

5

6

7

8
100k

Training Loss
Validation Loss

Figure 7: Training and validation cross-entropy loss for different Transformer configurations trained
on 10,000 or 100,000 samples. Image by Author

11

	Introduction
	The Custom-built Abstractive Summarisation System
	Transformer Model
	Encoder
	Decoder
	Fully Connected Layer - Generation of Output Probabilities
	Implementation of the ASS Transformer

	Abstractive Summarizer

	Generating Summaries and Qualitative Analysis
	Model Evaluation
	Numerical Analysis
	Abstractive Approach vs. Extractive Approach

	Conclusion and Future Work
	Additional Figures

