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Abstract

This report presents a comprehensive approach to sub-event detection in Twitter streams, undertaken as part of
CSC_51054_EP’s Machine and Deep Learning Data Challenge. The challenge focuses on analyzing tweets posted during
football matches from the 2010 and 2014 FIFA World Cups to predict the presence of specific sub-events in one-minute
time periods. Leveraging the rich dynamics of crowd interactions on social media, we employ a multi-faceted methodol-
ogy that explores traditional machine learning (ML), graph-based models, and large language models (LLMs) to classify
sub-events. We present robust preprocessing and feature engineering approaches, as well as different model development
phases, leveraging techniques such as boosting, graph representation, pre-computed embeddings, and fine-tuning of
LLMs. We achieve the best results with our EnhancedPeriodClassifier model, which integrates pre-computed embeddings
with supplementary temporal and contextual features for improved computational efficiency and accuracy in sub-event
detection. Comprehensive evaluations of all our approaches, including feature importance analysis, ablation studies, and
hyperparameter optimization, highlight the significance of different domain-specific features. Our study demonstrates not
only the effectiveness of a variety of ML techniques on the challenging task of understanding high-volumes of noisy
social media data, but also the challenges these models face in such contexts.



1 Data Preprocessing and Feature Selection/Extraction

1.1 Data Exploration and Preprocessing

Following an extensive data exploration phase, where we analyzed the tweet data made available as part of this data challenge in regards to
temporal distribution of tweets, class distribution, duplicates, and other relevant features, we built upon the preprocessing methodology
introduced in related research by Meladianos et al. [17, 16], merging key ideas to suit our three approaches to sub-event detection (Section 2).
First, we clean the dataset, starting with tokenization, where each tweet is split into individual words (tokens). To ensure uniformity and
avoid case sensitivity inconsistencies, all tokens are converted to lowercase. Research has shown that retweets introduce noise [17]. Hence,
we remove retweets and duplicates globally. Additionally, tweets that contain mentions were excluded, as these are often unrelated to the
event of interest [17]. To further refine the dataset, stopwords are removed, alongside any special characters and URLs, which are common
sources of noise [16]. This methodology was followed for our graph-based and traditional machine learning (ML) approaches, but adapted
for our large language models (LLMs) approach to balance noise removal with context preservation (e.g. keeping stopwords).

1.2 Feature Engineering

Feature engineering is a pivotal step, particularly for the methods outlined in Sections 2.1 and 2.3. Indeed, this step transforms raw data into
structured, meaningful inputs that the models can learn from, enhancing performance. Inexpensive to implement, we extracted a variety of
features. Table 1 provides an overview of the most notable features we worked with — either those that contributed significantly to accuracy
or those that illustrate relevant intuitions.

Type ID Feature Rationale Implementation Related
Work

Language
Encoding

L1 Word
embeddings

Captures contextualised semantic mean-
ing from tweets.

TF-IDF,
Encoder LLMs

[3, 5, 20, 23]

Temporal
Features

T1 Tweet Volume Hypothesized higher volume during no-
table events.

Total number of tweets per time
period.

[2]

T2 Sudden
Increase

Highlights abrupt spikes in activity, poten-
tially indicating a sub-event.

Tweet volume variation compared
to the previous period.

[14]

Contextual
Features

C1 Period
Number

Encodes temporal markers correlated with
event timings.

ID of the corresponding period. [1]

C2 Tweet Length Hypothesized to correlate with emotional
responses.

Maximum and average tweet
lengths per period.

[19]

C3 Keyword Count Indicates semantic relevance. Keyword Count per sub-event [15, 2]
C4 Sentiment Score Indicates semantic relevance. NLTK Sentiment Intensity Ana-

lyzer [10]
[19, 11]

Table 1: Overview of the engineered features used as basis for our sub-event detection approaches.

We monitored the impact of these features using ablation studies and model-integrated scores. Further details are provided in the respective
sections of this report.

2 Model Choice, Tuning and Comparison

2.1 Sub-event Detection in Twitter Streams via Traditional Machine Learning Models

In our initial approach, we created a feature matrix and employed numerous traditional ML models, summarized in Table 2. This
well-established method included phases of feature engineering, model selection, and hyperparameter optimization (HPO), as outlined in
Figure 1 [21].

Our feature engineering (see Section 1.2) led us to incorporate all features but sentiment analysis (C5) of Table 1 and more. We employed
Twitter-RoBERTa [13], creating rich embeddings, and averaging them per period to aggregate semantic meaning. Our extracted features
were relevant in most cases, particularly keyword count (C4) - a feature we designed to help the model identify keywords relevant to specific
sub-event types.

We applied this approach using various basic traditional models from the scikit-learn library1, and boosting techniques that offer efficient
implementations/libraries. We scaled the features through standardization or min-max scaling, yielding better results in logistic regression
and K-nn, while reducing computation time in general.

Assessing feature importance is crucial for identifying relevant information encapsulated in the data and removing noise, thus improving
performance [8]. We used model-integrated scores to evaluate individual feature importance and ablated irrelevant features to assess
potential accuracy gains.

1https://scikit-learn.org/stable/index.html
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Following best practices in research, we conducted an extensive HPO through grid search for each of our models [24].

Model Key Parameters Accuracy (%)

Logistic Regression Regularization strength (C): 0.1, Penalty: L2
K-Nearest Neighbors (KNN) (k): 7, Distance: Minkowski (p = 4) 0.68 validation data (VD)
Random Forest Number of trees: 100, Maximum depth: 5
LightGBM Maximum depth: 10, Fraction of features selected by tree: 0.6 0.68 (VD)
Adaboost Number of trees: 1000, Learning rate: 0.01
Catboost Number of iterations: 100, Depth of trees: 5
SVM (Linear Kernel) Regularization strength: 10, DimRed: Nyström 0.51
SVM (RBF Kernel) Regularization strength: 10, DimRed: Nyström 0.52

Table 2: Accuracy of traditional models with key parameters (on test set from train data)

2.2 Sub-event Detection in Twitter Streams via Graph Models

To leverage the structural relationships between tweets, we represented the data as graphs to detect sub-events. After preprocessing (see
Section 1), each tweet was transformed into a fully connected graph where unique words served as vertices and the weights of edges reflected
their co-occurrence frequency. These weights were normalized by the tweet’s length to account for varying tweet lengths. Subsequently, we
aggregated all tweet-level graphs for a given time period to construct an adjacency matrix, which formed the basis for sub-event detection.

2.2.1 Deviation analysis

The first detection method focused on identifying deviations in graph structures. Specifically, we compared the adjacency matrix of the
current time period to the aggregated matrices of the preceding “P” periods (e.g., P = 12). Using least-squares optimization, the edge weights
of the current period’s graph were fitted to those of prior periods. A significant deviation from the aggregated structure, as determined by
a predefined threshold, indicated the occurrence of a sub-event. This approach emphasized detecting abrupt structural shifts within the
temporal graph sequence, consistent with methodologies used in prior research [3, 17, 16]. This method was adapted from the approach
described in Meladionis et al. [16].

2.2.2 Graph evolution analysis

The second method analyzed changes in adjacency matrices between consecutive periods. By calculating the Frobenius norm of the
difference between matrices, we measured the degree of structural evolution. If the computed norm exceeds a threshold, a change in event
type is detected.

Method Deviation Analysis Graph Evolution Analysis

Scope Compares current period to P previous periods Compares consecutive periods
Optimization
Method

Least-squares optimization Frobenius norm of adjacency matrix

Focus Sudden changes in specific weights Average changes in weights

Table 3: Comparison of deviation and graph evolution analysis

Both methods demonstrated potential for sub-event detection. However, neither of them proved to be highly effective on the test set. The
deviation analysis achieved an accuracy of 0.62, which is similar to the frequency classifier. This relatively low accuracy can be attributed to
the lack of dynamic thresholding, which would require a computationally expensive training phase. This limitation made it infeasible to
implement within the available time frame given our implementation. Future iterations could implement dynamic thresholding as explored
by Meladionis et al [16].

2.3 Sub-event Detection in Twitter Streams via Large Language Models

As part of our third approach to sub-event detection, we experimented with fine-tuning pre-trained LLMs for period classification — an
approach shown to generally yield strong results [25] — as well as using pre-computed embeddings for downstream classification to reduce
computational costs. Initially, fine-tuning at the tweet level with majority voting was also tested but found less effective. Experiments were
conducted on NVIDIA RTX A4000 GPUs and meticulously monitored via Weights & Biases2, where we tracked over 150 hours of model
training, corresponding logs, and files to ensure reproducibility of each of our experiments.

2https://wandb.ai/site/
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2.3.1 The PeriodClassifier: a fine-tuning approach

To classify time periods comprising multiple tweets, we implemented two fine-tuning approaches: tokenizing tweets individually and
aggregating mean embeddings with attention, or processing concatenated tweets as sequences. Given the domain-specific nature of the
data challenge, we chose BERTweet[18] for the first approach and Longformer [4] for the second to handle the longer context-window
required by concatenation. Although promising, fine-tuning proved computationally expensive and less effective than the embeddings-based
approach described in Section 2.3.2.

2.3.2 The EnhancedPeriodClassifier: a pre-computed embeddings approach

To improve efficiency, we designed a custom model using pre-computed BERTweet embeddings. First, we tokenize the preprocessed
tweets (see Section 1) using BERTweet’s tokenizer, leveraging its additional normalization qualities, and pass up to MAX_TWEETS (=1500)
tokenized tweets per period through BERTweet to obtain accurate tweet representations in latent space. We represent individual tweets
by their mean-pooled embeddings, which may better represent short and noisy data compared to using [CLS] embeddings, as done in
Devlin et al. [6], for example. These embeddings are aggregated via Multi-Head Attention[22] and learnable pooling in our custom
EnhancedPeriodClassifier. We enrich the resulting period embeddings with additional normalized features (see Section 1.2) before
classification via a three-layer neural network. Figure 3 outlines this approach.

2.3.3 Ablation Study

To identify the best model and mitigate overfitting, we conducted a comprehensive optimization study (see Figure 4). We first compared the
different architectures described in this section pre-HPO. The pre-computed embeddings approach based on BERTweet emerged as the best
model while fine-tuning Twitter-RoBERTa exhibited strong promise. However, since its architecture and tokenization differs to the other
models, exploring this approach is kept for future work. Opting for the EnhancedPeriodClassifier model, we explored the effects of adding
different additional features (T1, C1, C2, C4) to the aggregated period embeddings through an ablation study (see Table 1). Allowing
the model to specifically consider T1, for instance, improved performance while adding C4 did not — likely due to the model’s implicit
sentiment understanding or limitations of the sentiment analyzer we employed.

2.3.4 Hyperparameter Optimization Study

We employed the Optuna3 framework for an efficient and systematic exploration of our final model’s hyperparameter space. Concretely, we
evaluated the learning rate, number of attention heads, dimension of the first fully connected layer in the classification head (fc1_dim),
setting the dimension of fc2_dim to be half of this value, dropout probability, and weight decay, with the latter two specifically introduced
to prevent overfitting. Due to the high computational costs of large-scale HPO, we trained 30 different EnhancedPeriodClassifier models
over the course of two days, exploring a variety of hyperparameters, with fc1_dim being identified as the most important hyperparameter
in our experiments (Figure 5). This highlights the critical role of the classification head in determining the model’s accuracy, as it directly
influences the model’s capacity to process and interpret the rich contextualized embeddings generated in the earlier steps.

3 Final Model Results and Evaluation

Comparing the three different approaches to sub-event detection outlined in Section 2, we found the graph-based model (Section 2.2) to be
too computational expensive for this data challenge, while the traditional ML methods (Section 2.1) delivered good results, achieving an
accuracy of ca. 72% on the (Kaggle) test set. The EnhancedPeriodClassifierModel (Section 2.3.2) emerged as the most successful approach
with an accuracy of ca. 75%. However, it should be noted that this approach is generally more complex and computational more expensive
than the traditional ML methods.

Building on the generally strong performance of the LLM approach, we briefly explored a further modified version of this model4, adding
additional components for improved robustness, such as residual connections, additional pooling, deeper neural architectures, and switching
to a GELU activation function, due its often superior performance compared to ReLu [12]. This is also the model achieving our team’s final
Kaggle result, with an accuracy of 77% on the test set. This model could be further explored and optimized in the future.

4 Conclusion and Future Work

This report presented an end-to-end method for sub-event detection in Twitter streams using data from the 2010 and 2014 FIFA World Cups.
By employing traditional, graph, and large language models, we successfully identified significant events, achieving a final accuracy of
ca. 77% on this data challenge’s test set. The EnhancedPeriodClassifier, a LLM approach based on enriching pre-computed embeddings
with additional hand-crafted features, proved the most effective. Feature engineering, ablation studies, and hyperparameter optimization
highlighted the crucial role of both the preparatory and post-model processes in enhancing model performance. Future work will explore
additional features, refine the presented ML methods through more extensive HPO, and investigate advanced model architectures, building
on the strengths of our three approaches and paving the way for further research into ML applications for social media data.

3https://optuna.org/
4The model’s training performance is available at https://api.wandb.ai/links/ml-data-challenge-24/ndamu0k0.
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Appendices

A Architecture of the Sub-event Detection Approaches
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Figure 1: Architecture of the traditional model approach.
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(a) Comparison of different LLM architectures. Best results were obtained
by employing the frozen BERTweet model. Twitter RoBERTa shows strong
promise.
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(b) Ablation study of additional features to enrich pre-computed BERTweet
embeddings. Best results were obtained without the normalized sentiment
feature.

Figure 4: Model selection and ablation study results: evaluation accuracy per epoch with 20% and 10% held-out validation data, respectively,
for original and Gaussian-smoothed results.
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C Results of EnhancedPeriodClassifierModel HPO
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(a) Optimization history. The best trial was Trial 21 with a validation
accuracy of around 80%.
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(b) Hyperparameter importance. The dimension of the first fully
connected layer, which also defines the dimensions of the second, is
considered the most important hyperparameter.

Figure 5: Results of the HPO using Optunaf. We identified the following best parameters for our model: lr=0.000207, dropout=0.1,
num_heads=12, weight_decay=0.0023, fc1_dim=2048

Trial Accuracy Dropout FC1 Dim Learning Rate Num Heads Weight Decay

0 0.771 0.48 1024 5.6e-5 4 4.2e-6
1 0.743 0.49 1024 1.1e-5 4 5.4e-6
2 0.771 0.16 2048 1.7e-4 12 1.4e-3
3 0.748 0.17 2048 1.6e-4 12 1.7e-3
4 0.734 0.3 2048 1.8e-5 8 4.5e-4
5 0.589 0.41 4096 8.7e-4 4 4.9e-3
6 0.799 0.21 4096 6.0e-5 4 1.5e-4
7 0.617 0.18 512 3.5e-4 8 8.2e-4
8 0.654 0.35 2048 5.3e-4 4 2.0e-5
9 0.407 0.39 512 1.7e-5 12 9.4e-5

10 0.659 0.25 4096 5.8e-5 4 6.1e-5
11 0.584 0.49 1024 4.9e-5 4 1.4e-6
12 0.72 0.25 1024 4.9e-5 4 1.5e-5
13 0.621 0.24 4096 9.0e-5 4 1.1e-6
14 0.57 0.11 1024 3.0e-5 4 2.3e-4
15 0.612 0.31 4096 1.5e-4 8 2.9e-5
16 0.715 0.41 4096 7.5e-5 4 3.0e-6
17 0.575 0.45 1024 3.0e-5 4 2.1e-4
18 0.636 0.3 512 3.3e-4 12 5.6e-6
19 0.603 0.21 4096 3.3e-5 4 3.6e-5
20 0.612 0.34 1024 1.3e-4 8 8.1e-3
21 0.804 0.1 2048 2.1e-4 12 2.3e-3
22 0.776 0.1 2048 2.8e-4 12 2.1e-4
23 — 0.12 2048 2.5e-4 12 2.7e-3
24 0.603 0.1 2048 2.6e-4 12 2.2e-4
25 0.799 0.13 2048 2.4e-4 12 2.7e-3
26 0.771 0.14 2048 5.2e-4 12 2.7e-3
27 0.621 0.21 2048 1.1e-4 12 6.7e-4
28 0.78 0.15 2048 2.2e-4 12 4.3e-3
29 0.752 0.13 2048 4.6e-4 12 8.8e-3

Table 4: Summary of the Optuna hyperparameter optimization for the EnhancedPeriodClassifier.
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