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Abstract

The growing complexity and volume of financial regulations pose significant challenges for

financial institutions striving to maintain compliance. Manual processing of these intricate

regulations is increasingly impractical, and research has shown that contemporary natural

language processing (NLP) tools struggle with the complexity of legal language.

This study addresses the above challenges by advancing the research of NLP within the

growing field of regulatory technology (RegTech) to discover financial regulatory infor-

mation (FRI) in legal documents and optionally match it with labels from an ontology

created by the University of Cambridge Regulatory Genome Project (RGP). Specifically,

we introduce the FRI Discovery and Annotation sYstem (FRIDAY) — the first ever

end-to-end NLP system for discovering and classifying FRI in unseen legal documents.

Using 1,149 expertly annotated documents containing anti-money laundering (AML) reg-

ulations from 75 jurisdictions around the world, this work conducts a comprehensive data

analysis to define relevant FRI in legal documents. We further present a robust pre-

processing algorithm that remedies discrepancies between annotated FRI extracted via

optical character recognition and document content. Five novel NLP systems are intro-

duced, including models built on existing text segmentation tools and novel combinations

of modern machine learning techniques, merging elements from text segmentation, text

zoning, and sentence boundary detection to discover FRI in unseen legal documents.

We evaluated ten model configurations on 6,930 pages of unseen AML regulations. Our

best system, FRIDAY, operates on a token level using a pre-trained RoBERTa model

optimised for text segmentation. It identifies and optionally classifies FRI with labels

from the RGP ontology. FRIDAY achieves mid-80s ROUGE scores against gold-standard

annotations, outperforming baseline approaches by 37%. Furthermore, it generalises well

to novel domains, maintaining strong performance on an additional 50,000+ pages of

unseen financial cybersecurity regulations with only a < 5% drop in performance.

FRIDAY demonstrates the potential of advanced NLP techniques in RegTech, significantly

improving regulatory compliance’s efficiency and accuracy. As the first system designed to

identify FRI in legal documents, it advances research in legal NLP and provides a ready-

to-use practical tool for various stakeholders to navigate regulatory frameworks. Future

research could seek to handle broader content and optimise FRIDAY’s components.
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List of terms and acronyms

Glossary

BIO Named entity recognition (NER) technique, where the Beginning, In-

side, and Outside of a relevant unit of interest are tagged. Also referred

to as IOB. The BIO approach is sometimes extended to other approaches

such as BIOE, additionally tagging ”End/Ending” elements.

Block Continuous unit of text extracted from the page of a PDF document

using the PDF extraction and manipulation library PyMuPDF. De-

pending on the circumstances, blocks may represent anything from sin-

gle characters to entire paragraphs. In this work, concatenated blocks

provide the ground truth for the textual content of a page.

RegGenome Financial regulatory services company Regulatory Genome Development

LTD (RegGenome) — a University of Cambridge spin-out. RegGenome

provided the annotated legal documents containing financial regulations

as well as a baseline algorithm as a starting point for this work.

Region An exact text segment, manually identified by regulatory experts work-

ing with RegGenome, containing essential financial regulatory informa-

tion (FRI) like requirements and obligations directed at entities such as

individuals, businesses, and financial institutions. In this work, regions

represent the ground truth for the FRI to be identified by the snippet

identifier system.

Snippet A text segment identified by the snippet identifier system that contains

relevant financial regulatory information (FRI). Ideally, snippets match

the regions annotated by experts.
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”With a new regulatory alert issued

every 7 minutes, how do I ensure

compliance?”

—Thomson Reuters

report on RegTech [29]

Chapter 1

Introduction

For decades, financial regulations have steadily increased in number and complexity [58].

The global financial crisis of 2008, much like previous crises, only accelerated this process

once more and made regulatory compliance a top priority for financial institutions [60,

84]. In response, authorities worldwide implemented stricter and ever more comprehensive

financial regulations such as BASEL III [6], the Markets in Financial Instruments Directive

II [73] and the Dodd-Frank Act [27]. The latter alone, with its 848 pages, exemplifies

only too well the extent of the complexity of financial regulation today, and recent reports

indicate this trend is set to continue [81, 100].

The growing complexity of financial regulations poses significant challenges and concerns

for banks and other financial institutions globally as they struggle to keep up and comply

with new regulations [3]. To meet these increasing demands, financial institutions — now

more than ever — require tools that are capable of automatically and accurately processing

and interpreting financial regulatory information (FRI) in a scalable and efficient manner.

The advent of machine learning (ML), a subdomain of artificial intelligence (AI), and

specifically natural language processing (NLP) techniques applied in the domain of law

and regulatory compliance, technology known as regulatory technology (RegTech), offer

promising solutions to the above problems [34, 58]. The sector is growing rapidly, and by

2026, RegTech is projected to account for 50% of global compliance budgets [60]. The

immense demand for RegTech solutions highlights the wide variety of stakeholders, includ-

ing financial institutions, regulatory bodies, compliance officers, and legal professionals

around the world, who can benefit significantly from the automated processing of FRI.

However, the complex domain and language of financial regulations make it challenging

to meet the demand for RegTech [53]. Despite the apparent benefits of RegTech and

advancements in general NLP technology, there currently exists no efficient tool to auto-

matically identify FRI in legal documents or descriptions of what constitutes ”relevant

FRI” in terms of its characteristics like location, scope or content within documents. Ex-

isting tools either have entirely distinct objectives or operate in different domains, such
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as identifying different textual content in job advertisements or emails [39, 50].

This work seeks to fill the identified gap by addressing the following central research

question: How can ML and, specifically, NLP be applied to identify and, as an extension

goal, classify text segments containing relevant FRI within structured legal documents?

For clarity, we refer to these text segments containing FRI using a parallel terminology:

• Regions : Segments manually identified by experts, considered the ideal.

• Snippets : Segments automatically identified by the NLP system developed in this

study. Ideally, i.e. in the case of an optimal system, snippets match the regions.

This distinction is further explained in Chapter 3.

Based on a comprehensive real-world dataset of over a thousand expertly annotated doc-

uments containing anti-money laundering regulations published in 75 jurisdictions world-

wide, the primary goal of this study is to develop a novel end-to-end snippet identifier

system that can automatically discover FRI in unseen legal documents. Additionally,

the system aims to optionally match the identified FRI with labels from an open-source

ontology created by the University of Cambridge Regulatory Genome Project (RGP) [12].

Figure 1.1: The goal of this work is to introduce a novel natural language processing (NLP)
system capable of discovering financial regulatory information (FRI) in legal documents.

To the best of our knowledge, this is not only the first work to ever address this task of FRI

discovery and classification but also the first to approach it based on this comprehensive

dataset. The dataset for our work was provided by the financial regulatory services

company Regulatory Genome Development LTD (RegGenome)1.

Concretely, this study makes the following main contributions:

1. Data analysis: As part of a comprehensive data analysis, we describe the different

textual elements contained in this work’s dataset and define what constitutes the

FRI to identify in the documents at hand. We synthesise the information needed

for developing a snippet identifier system.

2. Custom data pre-processing: A robust data pre-processing algorithm that suits

the idiosyncrasies of FRI is presented. This algorithm is capable of identifying

erroneous annotations (i.e. regions) in the actual document content and remedying

discrepancies between the two.

1https://reg-genome.com/
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3. Development and evaluation of FRIDAY: This work introduces the Financial

Regulatory Information Discovery and Annotation sYstem (FRIDAY). FRIDAY is

a novel hybrid NLP system leveraging modern ML approaches to not only discover

but also classify FRI in legal documents. As part of its development, five novel

contrasting NLP models are presented. These include two models built on existing

text segmentation tools and novel combinations of modern ML techniques, merging

elements from text segmentation, text zoning, and sentence boundary detection.

Evaluating ten different configurations of these models, the final version of FRIDAY

outperforms baseline approaches from industry and research by nearly 37% with

ROUGE scores of up to 0.86 against gold annotations (regions) in the test dataset.

Additionally, we show that FRIDAY generalises effectively to novel domains and

performs similarly well on over 50,000 pages of unseen cybersecurity regulations.

The ambition of this work extends far beyond scientific research. The project ultimately

aims to contribute to facilitating global financial information sharing, increasing the pro-

ductivity of compliance departments, and enhancing adherence to regulatory obligations.

Furthermore, it enables deeper insights into the capabilities of modern NLP techniques in

the challenging and under-researched domain of legal language and financial regulations.

The rest of this work is structured as follows: Chapter 2 presents relevant related work

that informed the development of FRIDAY and provides an overview of the employed ML

techniques. The subsequent main part loosely follows the traditional knowledge discovery

in databases (KDD) methodology illustrated in Figure 1.2, providing a framework for the

development of FRIDAY.

2. Data Preprocessing

3. Data Transformation

4. Data Mining

5. Interpretation/Evalution

Chapter 4: Data pre-processing

Chapter 5: Development of the snippet identifier system FRIDAY

Chapter 6: Evaluation

1. Data Selection Chapter 3: Data analysis

Figure 1.2: The KDD process and its relevance to this report’s structure. Based on [31].

Chapter 3 describes and analyses the data selected for use in this work as well as the

characteristics of FRI in our dataset. Based on these insights, the custom data pre-

processing algorithm is presented in Chapter 4. Chapter 5 introduces the development

of the snippet identifier system FRIDAY, followed by an evaluation of its performance in

Chapter 6. We conclude the report in Chapter 7 and provide directions for future work.
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Chapter 2

Background and related work

2.1 NLP in the legal domain

RegTech is rapidly advancing, with the potential to revolutionise the financial indus-

try [58]. Yet, the field is still in its infancy and faces many challenges that remain

unresolved [53]. While state-of-the-art NLP models have enabled breakthrough success

in many fields, they often fall short in RegTech and the legal domain in general [53].

A major reason for the deficiencies of current NLP methods in the legal domain is the

unique characteristics of legal language, rendering it significantly more complex than other

forms of natural language [34, 53]. Legal language is often characterised by technical, pre-

scriptive, and sometimes multilingual language, lengthy sentences, cross-references as well

as expansive and specially formatted documents [15, 34, 65, 72, 90, 109]. An additional

challenge is the lack of sufficiently large annotated datasets in the legal domain, which

prevents the adequate training of ML models [34]. Given the highly specialised form of

language, the manual annotation process in this domain is time-consuming and expensive

due to the significant expert knowledge required [15, 34, 97].

The above challenges make the application of ML techniques to legal documents sub-

stantially more difficult than other NLP tasks and are part of the reason there is only

relatively little coverage — although growing rapidly — of the application of NLP to

the legal domain in contemporary research [8, 34, 53, 65]. This not only underlines the

particularly difficult challenges that need to be solved in RegTech but also highlights a

critical research gap this work seeks to address [34, 65].
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2.2 Related NLP tasks and their limitations

The intricacies of legal language pose unique challenges on several key NLP tasks, which

are essential for processing legal texts effectively. The analysis of documents containing

FRI to discover snippets involves elements from three prominent NLP tasks in particular:

text segmentation (TS), text zoning (TZ), and sentence boundary detection (SBD). The

following sections detail each task’s purpose, review past approaches and discuss the

limitations of these methodologies in the legal domain and the context of this work.

2.2.1 Text segmentation (TS)

TS divides text into meaningful units, usually based on topical coherence, and is an impor-

tant NLP task often serving as a precursor for further downstream tasks like information

retrieval, text understanding, and language modelling [4, 19, 43]. It is the task closest

related to this work. TS can be categorised into two types: linear TS and hierarchical TS.

Linear TS divides text into non-overlapping segments, while hierarchical TS breaks them

down into subtopics [37]. Since most TS research deals with linear TS [28, 37], hierarchi-

cal TS will not be further covered here. Readers interested in hierarchical approaches to

TS are referred to Yaari [107], Eisenstein [28], and Lawless and Bayomi [64].

Text Segmentation (TS)

Figure 2.1: Text segmentation (TS) divides text into topic-based units.

Since Hearst’s initial research on TS in 1994 [43], many approaches have been investi-

gated. Early work mainly focused on estimating the lexical cohesion of different units

through lexical features for which similarity metrics were calculated [19, 43, 52]. Sim-

ilar research presented statistical models for topic modelling [7, 9, 18, 20, 26, 75, 83,

98, 105], where the task is to detect latent topics, for example through models like La-

tent Dirichlet Allocation [75, 83, 98], (Probabilistic) Latent Semantic Analysis [9, 20], or

dynamic programming approaches [105]. Next to these unsupervised statistical-model-

based approaches, further unsupervised methods using semantic relatedness graphs were

proposed [37]. More recently, following trends in general NLP, scholarship started to in-

vestigate supervised models for TS employing modern deep learning (DL) techniques [1,

4, 38, 57, 69, 72]. Notably, TS usually works with sentences or even broader units like

paragraphs as the elementary unit to be analysed for segmentation.
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2.2.2 Text zoning (TZ)

TZ is an NLP task closely related to TS and aims at classifying text segments into pre-

defined categories based on their content and rhetorical function. It was first introduced

by Teufel [101] in 1999 as argumentative zoning. While Teufel analysed scientific papers

by classifying the ”rhetorical status of a sentence” [102], the technique of zoning was

subsequently applied more widely to a variety of domains and text types such as news

articles [5], job advertisements [39, 40], theatre reviews [71], emails [50, 62] and the legal

domain [42]. Hence, the task is often also referred to more broadly as text zoning [e.g. 39,

40, 71]. Similar to TS, TZ traditionally works with sentences as the unit to classify.

Text Zoning (TZ)

Figure 2.2: Text zoning (TZ) classifies text into categories by content and function.

Recent research has shown that sequence labelling models such as Conditional Random

Fields (CRFs) [61] and Long Short-Term Memory (LSTM) networks [46], as well as their

bidirectional variant Bi-LSTM [41], are generally highly effective in TZ [39, 40, 45, 50].

In both, TS and TZ, hierarchical ML approaches have been employed [e.g. 38, 50]. For

example, Jardim et al. [50] use a sentence-level encoder in conjunction with a second-

level segmentation model to identify functional zones in emails. Unlike TS, however,

recent studies in TZ often also address the challenge as a token-level classification task,

leveraging traditional named entity recognition (NER) techniques [e.g. 1, 39, 40]. These

include the BIO approach where the Beginning, Inside, and Outside of a relevant unit of

interest are tagged [63].

2.2.3 Sentence boundary detection (SBD)

Like many other NLP tasks, TS and TZ have in common that they are rarely employed in

the domain of complex legal texts. Furthermore, both tasks tend to be addressed utilising

sentences as the underlying textual unit. Notably, most studies assume a predefined

split of documents into sentences (Figure 2.3) without detailing the methods used for

this division. For an application of TS and TZ in the legal domain, however, this step

of splitting text into sentences alone represents a non-trivial challenge and algorithms

commonly used in other NLP domains often perform poorly on legal documents [86].

In fact, SBD in legal texts is a complex area of research in its own right [10, 86, 90,

95]. Similar to TZ, SBD also employs the BIO tagging approach to identify sentence

boundaries [86].

Although SBD is not the primary focus of this work, it should not be neglected because it

15



Sentence Boundary
Detection (SBD)

Figure 2.3: Sentence boundary detection (SBD) enables splitting text into sentences.

significantly influences the performance of any potential sentence-based snippet identifier

algorithm. As one of the first steps in the model development, an incorrect sentence split

can have significant negative effects on overall model performance [10, 90].

2.2.4 Summary

Consolidated overview of limitations and research gaps

Although the NLP tasks described above are highly relevant to this work, their objectives

differ from the goal of identifying snippets in legal documents. Table 2.1 summarises the

limitations of the presented approaches with regard to the research question at hand and

suggests that a new methodology is needed for the task of identifying snippets.

Task Limitations and gaps in related research

TS

• Usually focuses on segmenting text into larger segments based on sentences
or paragraphs. As Chapter 3 will show, snippets can be shorter than this.

• Existing datasets for TS are often small in size or artificial [e.g. 19, 33, 37].
• Linear TS generally classifies every part of the text as part of a segment.
Snippets, however, do not need to cover a full page. (Chapter 3)

• The Number of segments to be created is not always flexible and is sometimes
fixed. The number of snippets, however, can vary widely. (Chapter 3)

• Some approaches rely on handcrafted rules and features, which are infeasible
for complex legal documents with intricate formatting. (Section 3.2.2)

TZ
• Limited recent research on TZ in the legal domain.
• Limited research into the use of modern DL models.

SBD
• Significantly more challenging in the legal domain due to long, complex
sentences and the intricacies of legal language [86].

• Assumptions often made in SBD approaches do not hold in the legal do-
main [86].

Table 2.1: Overview of limitations of the presented NLP tasks. Although TS, TZ, and
SBD offer good starting points for this study, a tailored approach combining these tech-
niques is needed.
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Towards a robust snippet identifier: integrating NLP techniques

Based on the identified research gaps, the snippet identifier system presented in this

work requires a tailored integration of several approaches from TS, TZ, and SBD. We

aim to combine their strengths and mitigate the limitations presented in Table 2.1 to

ultimately develop a robust tool for snippet identification in the legal domain. As such,

previous studies that stand in between these NLP tasks, such as ”Unit Segmentation of

Argumentative Texts” by Ajjour et al. [1], are of particular relevance for this work.

Given the substantial challenge of identifying poorly defined snippets containing FRI

within complex legal documents, we define the following desirable features for the snippet

identifier system based on the limitations of previous research:

I Adaptive boundary detection: The snippet identifier system should be flexible

with respect to snippet boundaries and capable of recognising boundaries between

words, sentences, paragraphs, or even pages. The system should be able to accom-

modate the various forms and structures of textual units found in legal documents.

II Unrestricted snippet identification: The system should not be constrained to

classifying every part of a text or limited to a predetermined number of snippets.

III Legal understanding: The system should be capable of interpreting the complex

format, language, and structure of legal documents.

IV Advanced NLP techniques: The system should go beyond handcrafted rules and

features and employ state-of-the-art sequence models, offering improved accuracy.

V Robust training datasets: To achieve high reliability and performance, the sys-

tem needs to be trained on extensive, expertly annotated data containing FRI.

2.3 Comparative analysis of ML techniques used in

this work

This work mainly builds upon two ML architectures that have been successfully applied to

a variety of NLP tasks relevant to this study: Long Short-Term Memory (LSTM) [46] and

transformers [106]. Specifically, we use bidirectional versions of these architectures, which

consider context in both directions of the input: bidirectional LSTM (Bi-LSTM) [41]

and pre-trained transformer models based on the Robustly Optimized BERT Pretraining

Approach (RoBERTa) [68] — given their strong performance in sequence classification

tasks, including TS, TZ, and SBD [14, 40, 47, 50, 55, 66, 70, 110]. Further details on

these ML techniques are provided in Appendix A.

Table 2.2 compares the LSTM and transformer-based approaches with respect to aspects

critical to this study. Considering the state-of-the-art performance of these models, both
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architectures offer promising foundations for the development of the snippet identifier

system.

Characteristic LSTMs
(incl. Bi-LSTMs & CRFs)

Transformers
(incl. pre-trained models)

Processing Sequential processing: each state
is dependent on the previous.

Parallel processing: handles all
inputs simultaneously.

Context
Understanding

Good at capturing long-range de-
pendencies. Bi-LSTMs can cap-
ture context in both directions.

Ability to capture wider context
using attention mechanism. Ad-
vanced models can capture con-
text in both directions.

Scalability Less scalable due to recurrent na-
ture.

Highly scalable due to attention
mechanism.

Suitability
for NLP Tasks

Strong performance in sequence
prediction and tagging tasks.

State-of-the-art performance
across many NLP tasks.

Recent
Innovations

Integration with CRFs improves
structured prediction capabilities.

Advancements in model architec-
ture and training techniques.

Model
Complexity

Relatively simpler model archi-
tecture.

More complex model architec-
ture.

Resource
Requirements

Generally lower memory and pro-
cessing requirements compared to
transformers.

Generally higher memory and
processing requirements due to
model size and parallelism.

Table 2.2: Comparative analysis of LSTMs (incl. Bi-LSTMs and CRFs) and transformers
(incl. pre-trained models such as RoBERTa). Both architectures provide good foundations
for a snippet identifier system, with pre-trained transformers likely performing best.

Despite the extensive application of Bi-LSTM models in related NLP tasks, we hypoth-

esise that pre-trained transformers will outperform Bi-LSTM models in our work due to

their ability to handle wider (bidirectional) contexts and their general language under-

standing. However, literature reveals mixed results regarding their efficacy in the legal

domain. Studies by Chalkidis et al. [16] and Malik et al. [72] highlight that pre-trained

transformers, despite their success in general NLP, often struggle with the specialised

language and structures of legal documents. Thus, while promising, their effectiveness in

processing legal texts and FRI is not guaranteed. This study, therefore, aims to critically

assess and address these limitations, contributing to a deeper understanding of pre-trained

transformers’ applicability in the legal and regulatory domain.
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Chapter 3

Data analysis

The architectural design of the desired snippet identifier must not only overcome the

gaps in contemporary research outlined in Chapter 2 but also accommodate the specific

characteristics of FRI in the available dataset. Hence, it is imperative to establish a

profound understanding of what constitutes a ”region” or a ”snippet”.

This chapter provides a detailed overview of this study’s data, the three major textual

elements specified for every page of the legal documents — blocks, regions, and (base-

line) snippets — and the characteristics of FRI as identified by regulatory experts.

3.1 Data acquisition and document processing

The data for this study was provided by the financial regulatory services company Regu-

latory Genome Development LTD (RegGenome)1 and consists of officially published doc-

uments containing financial regulations from various institutions worldwide. For the pur-

pose of this work, RegGenome shared a subset of English-language documents. Based on

the types of financial regulations they cover, these documents can be divided into three

themes :

1. AML: Documents related to anti-money laundering regulations

2. CYBER I: Documents related to financial cybersecurity regulations (1st subset)

3. CYBER II: Documents related to financial cybersecurity regulations (2nd subset)

While the anti-money laundering (AML) documents were utilised for the development of

the snippet identifier, the CYBER I and CYBER II documents were strictly isolated as

test data. Given their distinct content, these documents enable an independent evalua-

tion of the generalisation capabilities of the snippet identifier developed solely on AML

documents.

1https://reg-genome.com/
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3.1.1 Data acquisition pipeline

The documents from all three themes, real-world financial regulations, are generally pub-

lished by official government institutions and made accessible as PDF documents through

dedicated websites, such as the U.S. Federal Register2. Therefore, RegGenome systemat-

ically collected the documents from all three themes via web crawling. The final datasets

used in this study consist of a total of 2,843 documents from 277 distinct publishers around

the world, distributed as shown in Table 3.1. Figure 3.1 illustrates the origin of the AML

documents, demonstrating the wide jurisdictional coverage. The geographic origins of the

CYBER documents are visualised in Appendix B.1.

Theme #Documents #Pages #Jurisdictions #Publishers

AML 1,149 48,075 75 181
CYBER I 729 24,512 15 88
CYBER II 965 29,058 66 169

Total 2,843 101,645 84 277

Table 3.1: Number of distinct documents, pages, jurisdictions, and publishers across this
study’s datasets. While the comprehensive dataset ensures robust model training and
evaluation, its diverse character makes the development of the snippet identifier system
significantly more challenging.

180° 120°W 60°W 0° 60°E 120°E 180°

40°S 40°S

20°S 20°S

0° 0°

20°N 20°N

40°N 40°N

60°N 60°N

Figure 3.1: Origin of this work’s documents containing AML regulations. The circle’s
diameter indicates the number of documents originating from each country. Data from
the European Union is aggregated with that of Belgium.

The dataset’s diversity allows the model to learn from a wide range of regulatory document

formats and formulations, which should enhance the snippet identifier’s generalisation

capabilities to understand financial regulations regardless of their origin. However, this

diversity also introduces two significant challenges:

1. Document imbalance: The dataset is heavily imbalanced, with some jurisdic-

tions, like the US and EU, known for publishing significantly more financial reg-

2https://www.federalregister.gov/
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ulations than smaller jurisdictions, such as Rwanda and Zambia (see Table B.1).

This imbalance may negatively affect the model’s performance on documents from

less-represented jurisdictions.

2. Significant structural differences: Research shows that financial regulations of-

ten vary greatly in structure/format and content from jurisdiction to jurisdiction [21,

78]. Anecdotally, data science experts at RegGenome highlight that generalising to

these different structures is one of their biggest challenges. Excessive differences be-

tween regulations can prevent the model from learning and generalising the essential

knowledge needed for identifying snippets across various jurisdictions.

Figure 3.2 underscores the first of the above challenges: a select few publishers are pri-

marily responsible for a significant portion of regulatory documents. These include the

Financial Crimes Enforcement Network3 and Treasury4 from the United States, the Fi-

nancial Reporting Authority from the Cayman Islands5 and the European Parliament6.

Together, these institutions account for nearly 30% of all AML documents.
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Figure 3.2: Top ten publishers by number of documents in the AML theme (jurisdictions
indicated as ALPHA-2 codes (ISO 3166)7). The figure highlights the dataset’s imbalance,
with a few publishers from major jurisdictions contributing nearly 30% of all AML doc-
uments.

We provide additional insights into the diverse nature of this study’s dataset in Ap-

pendix B. Section B.2 shows the largest publishers in the CYBER themes, while Table B.1

provides an overview of the origin and quantitative distribution of all documents across

all themes.

3https://www.fincen.gov/
4https://home.treasury.gov/
5https://fra.gov.ky/
6https://www.europarl.europa.eu/portal/en
7https://www.iso.org/obp/ui/#search
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3.1.2 Document preparation

All documents for this study were provided by RegGenome in the XML file format, which

represents the starting point for this work. Next to relevant metadata, such as the title,

id, publisher, and country of origin of each document, each page (element) of a document

consists of two central structures containing the textual content of a page: blocks and

regions. Figure 3.3 illustrates the document preparation pipeline on a page level and

details how RegGenome obtained blocks and regions.

Scanned
(10%)

Non-scanned (90%)

PyMuPDF
➤ Blocks (PDF content)

Tesseract

Annotation process in Label Studio
➤ Regions (snippet ground truth)

Labels

Labels

PDF XML

Regulatory
Expert

RGP Ontology

Starting point
for this study

Figure 3.3: Preparation steps for each page of a document as executed by RegGenome.
Scraped PDF documents were made machine-readable through a combination of the
Tesseract and PyMuPDF libraries. Additionally, regulatory experts working with
RegGenome manually identified relevant FRI on these pages.

Blocks

To turn the raw PDF documents into machine-readable content, all documents were

processed through the PDF extraction and manipulation library PyMuPDF 8. In the case

of scanned documents (usually approximately 10 % of all documents9) the document

contents were first made extractable via the optical character recognition (OCR) engine

Tesseract10.

PyMuPDF implements heuristic algorithms to pre-structure the pages of PDF documents

into so-called blocks [93]. These blocks correspond to structural elements that PyMuPDF

identified during the extraction process and can represent any contiguous grouping of text

that the library identified based on the spatial layout and other formatting cues within

the document. Therefore, these blocks can correspond to anything from single characters

like page numbers to paragraphs or even entire pages. We obtained the full text of a page

through simple concatenation of all of its blocks.

8https://pymupdf.readthedocs.io/en/latest/index.html
9Estimate provided by RegGenome.

10https://github.com/tesseract-ocr/tessdoc
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Regions

RegGenome collaborates with regulatory experts who have manually reviewed each page

of the legal documents used in this work to identify FRI. Using the data labelling platform

Label Studio11, the human annotators drew bounding boxes around the relevant passages

containing FRI. These annotated sections of a page of a document are referred to as

regions and represent the ”gold snippet”, i.e. the ground truth for the development of the

snippet identifier system.

In Chapter 1 we introduced regions and snippets. For clarity, we reiterate their definition

as follows:

Definition

A region is a text segment within legal documents that contains relevant financial regu-

latory information (FRI), such as requirements and obligations directed at entities like

individuals, businesses, and financial institutions. These regions are manually identified

by regulatory experts.

A snippet is the text segment predicted by the snippet identifier system to match the

regions. Ideally, snippets and regions should be identical, with regions being the expert-

identified ideal and snippets being the system-generated approximations.

Exemplary regions are shown in Figure 4.1 and Figure B.7.

Figure 3.4 depicts the typical content of regions. Due to their regulatory character, regions

primarily address the parties concerned (”person”, ”customer”, ”business”, ”(financial) in-

stitution”) and contain words defining the regulation/obligation (”may”, ”shall”, ”must”,

...). The character ”b” and ”c” belonging to the 30 most common ”words” across all

regions in the AML theme emphasises the frequent usage of textual markers to structure

legal texts. We note that ”a” does not appear in this list due to it also being a removed

stopword. We do not remove stopwords in the data used for training.

Annotators also tagged each region with a detailed label to define the regulation and the

types of requirements it describes. The detailed labels are based on regulatory standards

and originate from the University of Cambridge Regulatory Genome Project (RGP)’s

ontology [12]. The RGP developed this information structure to standardise and globally

compare regulatory content [12]. The detailed labels used to annotate the regions in this

work’s data usually consist of up to four hierarchical levels, separated by hyphens, that

correspond to increasing levels of detail. While the first-level label (”Level 0”) defines the

theme (i.e. ”aml” for all AML documents), the second label describes the broad topic

of the regulation, with subsequent levels adding more detail. Appendix B.3 provides an

overview of these levels and their corresponding distributions. An exemplary detailed

label could be aml-customeridentification-verification-individuals.

11https://labelstud.io/

23

https://labelstud.io/


pe
rso

n

cu
sto

mer

inf
orm

ati
on

bu
sin

essmay

fin
an

cia
l b

ris
k
sha

ll

rel
ev

an
t
ord

er

tra
nsa

cti
on
mon

ey
must

sec
tio

n

ins
titu

tio
n

tra
nsa

cti
on

s

lau
nd

eri
ng

meas
ure

s
leg

al

pro
pe

rty

acc
ou

nt act

rel
ati

on
shi

p
en

tity c
fun

ds

pe
rso

ns

inc
lud

ing

rep
ort

ing

Words

0

10000

20000

30000

40000

50000
Fr

eq
ue

nc
y

Figure 3.4: 30 most frequent words (excl. stopwords) across all regions in the AML theme.
Regions usually contain common terminology, used to define regulations for different
parties. They are typically presented in a structured format.

3.2 Snippet creation process

The complex formatting and content of legal documents make the identification and cre-

ation of snippets for financial regulations an extremely challenging task (Chapter 2). Yet,

algorithms based on simple heuristics, such as regular expressions (regex), are still used to

address such tasks. While these algorithms offer advantages in terms of speed and ease of

implementation, they are typically less accurate than comparable modern ML methods.

As a baseline for this work, RegGenome provided such an algorithm that was used with

the goal of segmenting the pages of legal documents into region-like sections.

3.2.1 The baseline model: RegGenome’s snippeting algorithm

RegGenome’s snippeting algorithm takes the page of a document as input and returns its

snippets as output. This process can be roughly divided into two steps (pseudocode for

the algorithm is provided in Algorithm 1):

1. Identify the ”character type” of a page. Using pre-compiled regular expres-

sions, the algorithm attempts to either locate a table of contents on the page, or

identify the textual components defining the structure of the page, such as different

types of numbering or labelling formats like ”1)”, ”1.1”, and ”Article I”.

2. Split the page into snippets. If a character type is identified, it is used to divide

the page into the sections defined by the markers of this type. If no character type

was found, the algorithm simply segments the page into elements of similar size.

As the above snippeting algorithm was employed to segment pages into textual units

similar to regions, this algorithm, coupled with a custom post-processing pipeline to

choose the snippet most likely representing a region, provides a good baseline model for
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this study. Therefore, as part of the document pre-processing process, the text of each

page of all documents used in this work was manually passed through the snippeting

algorithm to obtain the baseline snippets for each page.

3.2.2 Limitations of the snippeting algorithm

Despite its computational efficiency, the snippeting algorithm has three major limitations:

1. Legacy code: The algorithm contains unreachable code segments due to conditions

that are impossible to meet, thus rendering these segments non-functional.

2. Heuristic rules and regex: The algorithm relies entirely on heuristic rules and

highly specific regex patterns, which are rarely triggered due to the complex for-

matting and origin-dependent differences of legal documents. Figure 3.5 illustrates

this fact by highlighting that the algorithm failed to identify the character type of

the pages in the AML dataset in more than 60 % of all cases. The majority of its

pages were simply split by size.

3. Size-based splitting: When simply splitting pages by size, the algorithm employs

hard character length boundaries, which do not account for the different formatting

of documents from different jurisdictions.
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Figure 3.5: Total number of snippets identified through the snippeting algorithm by
character type across all AML documents. The algorithm failed to identify character
types in over 60% of cases, defaulting to a basic size-based split instead.

In summary, the snippeting algorithm is too static to handle the diverse legal documents

from various jurisdictions. Additionally, it lacks any logic to decide whether a separated

text segment constitutes a relevant snippet. Therefore, while the snippeting algorithm

represents a basic TS algorithm, used in the same use case as the snippet identifier sys-

tem, it requires post-processing and additional statistical modelling. These additions are

necessary to identify which snippets — which themselves may be inaccurate — could rep-
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resent regions. Our study aims to surpass the performance of the snippeting algorithm

as a baseline.

3.3 Comparative Analysis

For this project, to aid the comparison of textual elements of all 2,843 unique documents

in the AML dataset, we developed a custom comparison tool. With this tool, a user can

interactively load and display a PDF page of any document in this study’s datasets. On

this page, all regions, if present, including their detailed label(s), are marked with a red

bounding box as drawn by the human annotator. Furthermore, the tool offers a tex-

tual comparison of the full-page text, blocks, baseline snippets created by the snippeting

algorithm, and regions. An example is shown in Figure B.7.

As part of the data analysis, the characteristics of all three textual elements of a page

— blocks, regions, and baseline snippets — were quantitatively analysed. Table 3.2

presents relevant statistics for these elements in the AML dataset, with token counts

obtained using RoBERTa’s Byte-Pair Encoding (BPE) tokenizer12. Figure B.8 and Fig-

ure B.9 show the detailed structure and distribution of these elements.

Element Total Averages Minimum Maximum
number # Tokens # Tokens

Documents 1,149 – – –

Pages 48,075 • Pages per document: 41.84
• Tokens per page: 662.40
• Pages with Regions 23,894

0 3,007

Blocks 163,498 • Blocks per document: 142.30
• Blocks per page: 3.40
• Tokens per block: 194.77

0 3,007

Regions 43,053 • Regions per document: 37.47
• Regions per page: 0.90
• Tokens per region: 234.55

3 1,985

Baseline
Snippets

88,942 • Snippets per document: 77.41
• Snippets per page: 1.85
• Tokens per snippet: 358.33

0 2,029

Table 3.2: Overview of key metrics for all textual elements of the AML data set. On
average, baseline snippets encapsulate more content than regions, while blocks are more
granular than regions. Improved segmentation methods are needed to better approximate
the regions.

The quantitative analysis allows insight into numerous properties of the dataset that are

crucial for developing a snippet identifier system.

12https://huggingface.co/docs/transformers/en/model_doc/roberta#transformers.

RobertaTokenizerFast
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Firstly, it emphasises the different average granularities of the elements, which can be

coarsely defined as Baseline Snippets > Regions > Blocks in terms of size. The snip-

peting algorithm usually creates segments larger than regions, while blocks tend to be

smaller or similar in size to regions. Secondly, pages comprise around 662 tokens on

average, which exceeds the input size limit of many transformer-based models such as

Bidirectional Encoder Representations from Transformers (BERT) and RoBERTa [25,

68]. Thirdly, most element distributions are strongly left-skewed (Appendix B.3), with

a considerable portion of elements falling into smaller value ranges. There are some sig-

nificant outliers, such as pages with 18 regions or up to 3,007 tokens of content. Finally,

our analysis shows that regions and, thus, the snippets to be identified, can range in size

from parts of a sentence to a full page.

3.4 Implications for the snippet identifier system

This chapter has shown that the snippets we aim to identify are the approximation to

the regions marked by human regulatory experts in legal documents. Therefore, it can be

formalised that a perfect snippet identifier system would be capable of identifying these

regions on unseen pages, effectively replicating the task of human experts.

Furthermore, it has become evident that RegGenome’s snippeting algorithm (Section 3.2),

while functional, lacks the capabilities to accurately identify snippets in regulatory text.

This further motivates the work at hand and underscores the necessity for a more flexible

and accurate replacement system.

Extending the list of desirable features

Based on this chapter’s findings, the list of desirable features for the snippet identifier

system outlined in Section 2.2.4 can be extended as follows:

VI Page-level snippet identification: The system should work on a page level to

replicate the job of regulatory experts who annotate documents page by page. This

also enables the model to work with inputs close to the 512-token limit imposed

by most modern transformer-based ML models. Still, the snippet identifier system

must take into account that the average page length, for example, in the AML

theme, exceeds this limit. An adapted pre-processing approach is required.

VII Flexibility in snippet size: The system should dynamically determine the number

and size of snippets per page (0 to n), as snippet sizes can vary greatly.

VIII Broad regulatory understanding: The system must accommodate diverse doc-

ument formats from nearly a hundred different jurisdictions worldwide.
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Similarity between blocks and regions

The data analysis and manual observations of this study’s data indicate that the blocks

generated by PyMuPDF oftentimes appear fundamentally similar to regions.

To test this hypothesis, all regions of the AML dataset were extracted and page-wise

compared to the page’s blocks with the highest Jaccard similarity (see below) to the

region. We evaluated these block-region pairs by calculating metrics commonly used in

NLP research to assess the similarity of two texts, as follows, with Rtokens and Stokens being

multisets containing all tokens of the region and snippet respectively:

• Jaccard similarity: measures the similarity between two sets. The Jaccard

similarity is frequently used in related work to evaluate the performance of NLP

systems in creating text similar to a reference text [24, 30, 103]. We calculated the

metric as

Jaccard Similarity =
|Rtokens ∩ Stokens|
|Rtokens ∪ Stokens|

= 1− Jaccard Distance (3.1)

utilising the NLTK library13. Values were averaged across all snippet-region pairs.

• Precision, Recall, and F1-score: commonly used metrics to assess model

performance in classification tasks. Instead of averaging, true positives, false

positives, and false negatives were collected across all pairs and precision, recall, and

F1-score were calculated on a global level (i.e. across all matches) [24]:

Precision =
True Positives

True Positives + False Positives
(3.2)

Recall =
True Positives

True Positives + False Negatives
(3.3)

F1-Score =
2 · Precision · Recall
Precision + Recall

(3.4)

where True Positives = |Rtokens∩Stokens|, False Positives = |Stokens|−True Positives,

and False Negatives = |Rtokens| − True Positives.

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE) score: mea-

sures the quality of machine-generated text through comparison with

human-generated reference text. Developed by Lin [67], ROUGE is widely

used in evaluating NLP tasks (e.g. natural language generation, summarisation,

translation) by comparing generated text against human references, making it highly

suitable to evaluate the quality of snippets against regions [30, 85]. Furthermore, its

recall-oriented character is preferable for this study as capturing false positives (mis-

takenly marking text as FRI) is preferred over missing relevant FRI. We calculated

13https://www.nltk.org/api/nltk.metrics.distance.html#nltk.metrics.distance.jaccard_

distance
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ROUGE scores as follows:

ROUGE-N F1-Score =
2 · PrecisionN · RecallN
PrecisionN +RecallN

(3.5)

Where:

PrecisionN =
Overlap(N)

Total(N)candidate
, RecallN =

Overlap(N)

Total(N)reference
(3.6)

Concretely, scores were calculated by comparing the N -grams (i.e. contiguous se-

quences of N words) of both texts using the rouge library14. For this study, the F1-

score for ROUGE-1 (unigram overlap), ROUGE-2 (bigram overlap), and ROUGE-L

(longest common subsequence overlap) were assessed for each model. Pairwise ob-

tained values were averaged across all samples.

The average scores across all block-region-pairs are presented in Table 3.3 and indicate a

significant similarity and overlap between the two elements. This confirms the hypothesis

of close relatedness between blocks and regions, providing relevant information for the

development of the snippet identifier system (Chapter 5).

Jaccard
Similarity

ROUGE-L-F Precision Recall
F1-
score

80.81% 87.45% 86.13% 81.83% 83.93%

Table 3.3: Metrics on the similarity between blocks (PyMuPDF) and regions (ground
truth). Blocks can often closely match regions, which indicates their potential for accurate
snippet identification.

The high similarity can be attributed to the fact that PyMuPDF creates blocks primarily

based on spatial information [93]. Although these blocks are not always precise due to

the simplicity of the heuristic algorithms utilised by the library, they usually correspond

to isolated sentences, enumerations, paragraphs, or similar textual blocks. In many cases,

this approach corresponds closely to that of human experts, who also usually annotate

regions taking into account the spatial conditions of text units on a page in order to

enclose self-containing units with (rectangular) bounding boxes.

14https://pypi.org/project/rouge/
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Chapter 4

Data pre-processing

4.1 Motivation

The previous chapter demonstrated that each page of the dataset builds upon two different

sources of textual content. Regions provide the “ground truth snippets” as the output

of the annotation process for training the snippet identifier. However, these regions rely

on OCR to convert annotated text back into a machine-readable format. As this OCR

process effectively attempts to capture the text marked by the annotators by reading it

from an image of a PDF page, this process can introduce errors due to image quality or

font recognition. In contrast, blocks provide the ”ground truth text” through direct text

extraction from PDF documents, resulting in a more accurate machine-readable collection

of the page text compared to the OCR process. Consequently, the texts of regions often

do not precisely align with the corresponding text from blocks, even though they are

derived from the same page and should, in theory, contain identical text.

The difficulty of using OCR to accurately capture the text of regions is exacerbated even

further by the high complexity of the legal documents analysed in this study. Figure 4.1

illustrates examples of highly complex pages and annotation deficiencies in the AML

dataset, underscoring not only the immense challenges of textual discrepancies but also

the intricate documents that need to be handled in this work.

The mismatch between the captured text of blocks and regions prevents a straightforward

matching between the two. Consequently, it is impossible to straightforwardly identify

which text elements of a page truly represent a region. Therefore, a robust strategy is

needed to locate regions within the page text. Given the size of this study’s datasets

containing over 100,000 pages, a manual correction of the OCR-identified region texts

is not viable. Hence, a custom pre-processing algorithm is required to identify regions

within pages while accounting for mismatches caused by OCR.
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(a) Multiple languages in a sin-
gle document

(b) Region with misplaced
markers through OCR

(c) Inaccurate drawing of
bounding boxes

(d) Repeated regions with dif-
ferent labels

(e) Complex page layout (I) (f) Complex page layout (II)

(g) Large amount of content in
a single region

(h) Significant number of anno-
tations on one page

(i) Example of scanned page
with hard to identify content

Figure 4.1: Examples of highly complex pages and annotation errors in the AML dataset.
The examples illustrate the diverse document formatting and annotation challenges across
different jurisdictions. The dataset poses significant challenges for developing a robust
snippet identifier system.
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4.2 The custom pre-processing algorithm

This section details the components of the custom pre-processing algorithm developed to

identify regions in pages.

The main idea of the pre-processing algorithm is to precisely locate the beginning and end

of a region within a page. Once these two indices have been identified, the text between

these two markers, as given by the concatenated blocks’ contents, can be extracted as

the ”correct” region. To enable this type of matching and index a page, we first employ

the RoBERTa BPE tokenizer for consistent tokenization of both blocks and regions. As

shown in the example below, the tokenizer splits text into subword tokens, which allows

for the matching of text on a level more granular than words:

Exemplary input text:

Assess anti-money-laundering (AML) risks within the organization's portfolio.

Tokenized output:

['Ass', 'ess', '_Ganti', '-', 'money', '-', 'l', 'aundering', '_G(', 'AM', 'L', ')', ...]

To identify a region within a page, the pre-processing algorithm follows a two-step ap-

proach:

1. Find an initial approximate match for the region (i.e. ”get close enough”).

2. Locate the exact beginning and end of the region around the initial match by ad-

justing the indices and possibly refining the region content.

4.2.1 Initial approximate match estimation

Given a tokenized page P and region R as input, the algorithm initially attempts to find an

exact match for the first min(50, |R|) tokens of the region. This approach facilitates fast

and efficient identification of the region in cases where OCR scans are accurate. Sliding

a window of the region tokens across all indices of P , a region is considered identified if

the following condition is met:

min(|rc|,|pc|)∑
i=1

1(rc[i] ̸= pc[i]) + ||rc| − |pc|| ≤ allowed diff (4.1)

Here rc and pc refer to the cleaned strings of the region and the page, respectively, that

are being compared at each character position i. Cleaning ensures that characters highly

prone to OCR misrecognition (e.g. ””*°”) are not taken into account, while the al-

lowed diff parameter permits minor differences stemming from OCR errors. By default,

allowed diff is set to 2, ensuring that only practically exact matches are considered valid.

If no exact match can be found, the approximate location of R in P is identified as follows:
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Definition 1. We define the n-gram set for a sequence S and an integer n as:

Ngrams(S, n) = {(S[i], S[i+ 1], . . . , S[i+ n− 1]) | 0 ≤ i < len(S)− n+ 1} (4.2)

Definition 2. We define the overlap score between two n-gram sets A and B as:

Overlap(A,B) =
|A ∩B|
|B|

(4.3)

To find the approximate location of R within P , a window w of size |R| is slid over P for

each start index istart in [0, |P | − |R|]. The best match index i∗start is the index with the

highest overlap score exceeding a minimum threshold Tmin (default: Tmin = 0.2):

i∗start = arg max
0≤i≤|P |−|R|

(Overlap(Ngrams(P [i : i+ w], n),Ngrams(R, n)))

where the overlap score exceeds threshold Tmin

(4.4)

By default, we use n = 5 and n = 2 if |R| ≤ 16.

The results of the initial approximate match estimation define the search space for the

refinement process that follows. If no approximate match or multiple matches for the

region were found within the page, the refinement process, which is more precise but also

computationally significantly more expensive, is applied to the entire page. Otherwise,

the refined search process will consider up to 60 tokens before and 60 tokens after the

estimated region’s tokens on the page.

4.2.2 Match refinement

The match refinement procedure can be divided into two similar steps: adjusting the

start index and adjusting the end index.

Adjusting the start index

1. Identify the region start. To adjust the start index, the pre-processing algorithm

iterates through the search space sstart = {max(0, i∗start − span),min(i∗start + span, |P |)},
with span = 60. For each tested index i ∈ sstart, the tokens pwk

= P [i : i + wk], with

w0 = 64, are extracted and transformed into a single string. Characters likely to cause

OCR mismatches are removed. Subsequently, if |pwk
| ≥ 8, the algorithm tests if pwk

starts

with R[iteration×2 : |R|], iteration = 0, or vice-versa. If no match is found in the search

space, iteration is incremented, and the procedure is repeated until iteration = 16. This

approach allows an algorithmic estimation of the closest match of the region in the page

text while taking into account that the beginning of a region might be flawed itself. If

no match is found — even after 16 iterations — the window is re-calculated as wk = w
2k

with k = k + 1, and the full process is repeated until k = 3. By dynamically adjusting
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the number of characters to match downwards, the algorithm increases the likelihood of

finding a match. If this method is ultimately unable to identify the start index of a region

inside the page text, the match refinement process stops prematurely. In this case, the

original region text, as extracted via OCR, is kept.

2. Refining the region beginning. Once the precise start index of a region is located,

the pre-processing algorithm determines whether this region’s beginning can and should be

further refined in a linguistically sensible manner. For example, if an enumeration marker

such as ”x)” is in close proximity to the initially identified start index, this marker is set

as the new beginning of the region. Alternatively, the algorithm attempts to determine

the beginning of a previous sentence or other manually defined ”region starters” as a

new region beginning if the newly identified region text does not already commence with

an appropriate character. Although this process of optionally further refining the start

of a region mostly relies on manually defined simple heuristics and carries the risk of

introducing noise, its conservative implementation is expected to overall aid in correcting

OCR mismatches. This process aims to help restore the original intent of the human

annotator.

Adjusting and refining the end index

In contrast to the start index adjustment, the pre-processing algorithm first modifies the

search space for the region end index before adjusting it. This step is necessary to account

for potential special whitespace and error tokens that might strongly inflate the number

of region tokens captured by OCR. Hence, the search space for the region end index is

defined as:

send = {max(0, i∗start),min(i∗start+ |R|+span+#whitespaces+#error tokens, |P |)} (4.5)

Based on this search space, the optimal end index of a region i∗end is identified by mirroring

the start index identification approach in the opposite direction. If no precise identification

of a region’s end index is possible, the end index remains i∗end = min(i∗start + |R|, |P | − 1)

by default. Similar to the start index refinement, the end token of a region is moved to

the next sentence ending or enumeration marker if the identified region does not already

end with a suitable character such as ”.”.

4.2.3 Practical effects

The custom pre-processing algorithm can be used to obtain the refined region text, its

tokens, as well as the start and end index of the refined region within the corresponding

full text of a page. Table 4.1 provides an example of the effect of the algorithm on the

textual content of the regions. The refined region correctly represents the ground truth

annotation visualised in the ”annotated page screenshot”.
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Annotated page screenshot (regulatory expert)

Region (OCR via Label Studio) Refined region (after pre-processing)

(i) G) (k) Inform the donors of how and where
their donations are going to be expended; Take
reasonable measures to confirm the identity, cre-
dentials and good standing of the beneficiaries
and associate NPOs, and that they are not in-
volved with and/or using the charitable funds to
support terrorists or terrorist organisations; In
a risk-based approach , conduct a reasonable
search of publicly available information, including
information available on the Internet, to deter-
mine whether any donors/beneficiaries/partners
or their key employees, board members or other
senior managerial staff are suspected of being in-
volved in activities

(i) Inform the donors of how and where their do-
nations are going to be expended; (j) Take rea-
sonable measures to confirm the identity, creden-
tials and good standing of the beneficiaries and
associate NPOs, and that they are not involved
with and/or using the charitable funds to sup-
port terrorists or terrorist organisations; (k) In
a risk-based approach13, conduct a reasonable
search of publicly available information, including
information available on the Internet, to deter-
mine whether any donors/beneficiaries/partners
or their key employees, board members or other
senior managerial staff are suspected of being in-
volved in activities

Table 4.1: Exemplary comparison of the original region text extracted via OCR and the
refined region created by the pre-processing algorithm. Discrepancies are highlighted in
yellow. The refined region better matches the annotation. Text from [76].

The data pre-processing algorithm was used to match the OCR-extracted text of all

regions with the page texts extracted via PyMuPDF. In the following sections, references

to ”regions” or ”snippets” therefore generally imply the use or identification of refined

regions. Out of the 58,157 regions contained in this work’s dataset (across all themes),

32 regions could not be matched and refined within the PyMuPDF-extracted page texts.

This corresponds to an error rate of the prep-processing algorithm of 0.055%.
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Chapter 5

Development of the snippet

identifier system FRIDAY

Building on insights from the previous chapters on the state of the art in NLP tasks

related to this study and the characteristics of the data from RegGenome, this chapter

introduces the methodology for developing the Financial Regulatory Information Disco-

very and Annotation sYstem (FRIDAY).

First, it is crucial to define the textual underlying unit for the model. Research shows

that it is by no means certain at which level — token, sentence, or larger segment —

the NLP model should operate [e.g. 4, 38, 72]. Therefore, this chapter introduces four

innovative snippet identification methods, systematically exploring different options in a

coarse-to-fine strategy. All models follow a page-wise prediction strategy to replicate the

annotation process conducted by human regulatory experts.

Two models are based on fundamental TS approaches and work with larger segments (Sec-

tion 5.1), while the sentence-level (Section 5.2) and token-level (Section 5.3) approaches

are more granular and introduce more sophisticated NLP models that incorporate compo-

nents from various NLP tasks. The TS-based models were limited to the main objective

of this work, the discovery of snippets, while the token-level and sentence-level models

were trained to also classify snippets.

The AML datasets for each model are divided into training, validation, and test sets at

the document level, managed through a centralised JSON file to ensure consistency and

objective performance comparisons. Following best practices, the training-validation-test

split was independently established as a stratified 70-15-15 split, considering the number of

pages in each document to ensure the split does not become skewed by disproportionately

large or small documents. This results in 804 documents (34,404 pages) for training, 172

documents (6,741 pages) for validation, and 173 documents (6,930 pages) for testing.
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5.1 Text segmentation-based approaches

The TS-based approaches to identifying snippets rest on the hypothesis that existing TS

methods are capable of segmenting pages of regulatory documents into segments that are

similar enough to regions. Based on these segments, a classifier can then be trained to

predict whether such a segment should be considered a region or not.

The following sections present two approaches to obtaining such text segments that could

form the basis for a downstream snippet identifier (Section 5.1.3).

5.1.1 GraphSeg-based TS

GraphSeg, introduced by Glavaš et al. [37], is an unsupervised graph-based TS model that

uses word embeddings and semantic relatedness to merge sentences into segments. Due to

its unsupervised nature, the model can be applied to this work’s texts without additional

dedicated training. As GraphSeg is used as a baseline to compare with state-of-the-art

TS approaches in related research [4, 38], we employ the GraphSeg-based model as an

additional baseline next to the snippeting algorithm.

For this study, the Java implementation of the GraphSeg model1 was used to page-wise

segment this study’s data, providing the first input option for the snippet identifier model

based on pre-determined text segments.

5.1.2 Block-based TS

Section 3.4 demonstrated that blocks generally align well with the format and location

of regions. Therefore, blocks, i.e. text segments created by PyMuPDF, form the second

input option for the snippet identifier model based on pre-determined text segments.

Since blocks are typically more granular than regions (Section 3.3), the block prediction

model could be refined to merge adjacent blocks before comparing them to regions.

5.1.3 Snippet prediction

To leverage GraphSeg segments or blocks to predict snippets, we need to develop a statis-

tical model to classify these segments as representing a region or not. This requires the

creation of a custom dataset for training.

Dataset creation

The dataset for the TS-based snippet identifier system is created using the pre-processed

AML data. Each sample is a text segment labelled as 1 if it represents a region and 0 oth-

erwise. Building on Section 3.4, labels are defined using Jaccard similarity between Graph-

1https://bitbucket.org/gg42554/graphseg/src/master/
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seg segments/blocks and regions. Segments with similarity above the optimal thresholds

of 0.82 for blocks and 0.58 for GraphSeg are labelled 1, others 0. These thresholds were

determined using the elbow method [104] implemented in the kneed package2. Details on

our exact methodology are provided in Appendix C.

This method results in two datasets: one for the ”block prediction” model (”Blocks”) and

another for the ”GraphSeg segments prediction” model (”GraphSeg”).
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Figure 5.1: Distribution of max. similarity scores against regions: blocks (top row) and
GraphSeg segments (bottom row), shown as absolute (left) and cumulative (right) values.
Blocks generally align well with regions, whereas many GraphSeg segments do not.

In addition to the threshold values, Figure 5.1 confirms the strong similarity between

blocks and regions. Over 70% of blocks are more than 80% similar to regions, while

GraphSeg segments show a wider distribution of similarity values. This analysis indicates

that while GraphSeg divides text into segments that can be very similar to regions, it also

segments text into portions that do not match the regions well.

Segment prediction

Based on the two separate labelled datasets, a RoBERTa [68] model for sequence classifi-

cation was trained using the HuggingFace implementation3 for both Blocks and GraphSeg.

Both models were trained on one NVIDIA A100-SXM4-80GB GPU for three epochs, with

a batch size of 128, 500 warmup steps, and a weight decay of 0.01.

2https://pypi.org/project/kneed/
3https://huggingface.co/docs/transformers/v4.40.2/en/model_doc/roberta#transformers.

RobertaForSequenceClassification
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5.2 Sentence-level model

Chapter 2 demonstrated that many NLP tasks related to this work typically operate at

the sentence level. This includes numerous TS models [e.g. 9, 19, 37, 38, 54, 57, 72, 83] as

well as TZ approaches [e.g. 50, 71]. In the context of applying NLP in the legal domain,

Castano et al. argue that ”a single sentence is a good candidate to become a document

chunk” [15]. Based on these findings, this study also introduces a sentence-level model,

which assumes that snippets are typically at most as small as what an SBD tool would

identify as a sentence in a given text.

5.2.1 Model architecture

The sentence-level model builds upon the key concepts of TS but also incorporates signifi-

cant components from TZ and SBD (Section 2.2). The basis of our architecture is inspired

by Glavaš and Somasundaran’s TS model CATS [38]. We present a novel hierarchical

neural model, combining a first-level sentence transformer built on SBD techniques with

a downstream second-level encoder network that consumes the output of the sentence

transformer to make the final classifications in a TZ-inspired manner.

The following sections describe the three central components of the sentence-level model.

The full architecture is illustrated in Figure 5.2.

Sentence splitting

As the sentence-level model relies on a list of sentences as input, the precursor to the first-

level transformer is dividing the full text of a page into sentences. Chapter 2 highlighted

the difficulty of accurately splitting legal text into sentences. Therefore, based on related

research in legal SBD [8, 10, 86, 94, 95], three different sentence splitting methods were

employed in this study (see Appendix C.3 for details).

1. Customly trained Punkt: An unsupervised SBD approach developed by Kiss

and Strunk [56] and customly trained on the AML dataset using NLTK’s Punkt

implementation4.

2. Extended SpaCy: The SpaCy5 English language model en core web sm with a

custom component to handle consecutive newline characters (”\n”).

3. MultiLegalSBD: A transformer-based model specifically introduced for SBD within

the legal domain by Brugger et al. [10] in 20236.

To further enhance the sentence-splitting performance, the sentence-level model can lever-

age the existing crude division of a page into blocks. Manual experiments showed that

4https://www.nltk.org/api/nltk.tokenize.punkt.html
5https://spacy.io/models/en
6https://huggingface.co/rcds/distilbert-SBD-fr-es-it-en-de-judgements-laws
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Figure 5.2: The sentence-level model architecture. Illustration based on [38, 44].

processing the page block-wise, rather than as a full text, prevented errors where all three

SBD methods struggled to separate complex headings from the first content-carrying sen-

tence as PyMuPDF would separate such headings as distinct blocks. Therefore, block-wise

segmentation is expected to improve overall SBD accuracy. We note that processing text

through an SBD tool removes formatting cues (e.g. ”\n”), which means the sentence-level

model cannot retain this information.

First level (sentence) transformer

The sentences of a page serve as inputs for the first part of the sentence-level model:

a transformer model whose objective is to generate multidimensional vector represen-

tations of each sentence. These sentence embeddings capture the semantic content and

position of each sentence within the page. This methodology aligns with hierarchical

models in related TS and TZ literature [38, 50, 57]. Unlike these approaches, however,

we follow Aumiller et al. [4] in leveraging pre-trained models for the benefit of transfer

learning, specifically Reimers and Gurevych’s S-BERT [82]. We employ the sentence-

transformers/all-MiniLM-L12-v2 model from the sentence-transformers library7, which

balances speed and accuracy in calculating 384-dimensional sentence embeddings [91].

7https://sbert.net/docs/pretrained_models.html
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Second level encoder network

The context-enriched sentence embeddings from the sentence transformer are consumed

by a downstream encoder network, serving as the second-level model. This model learns

how to accurately transform (i.e. contextualise) the embeddings to predict snippets in

regulatory documents. We evaluated various architectures for this second-level encoding

network, including Bi-LSTM, Bi-LSTM+CRF, and transformer models, following state-

of-the-art approaches in TS and TZ [e.g. 1, 38, 40, 50, 57]. We considered adding optional

sinusoidal positional encoding to the sentence embeddings, as per Vaswani et al. [106],

but found it did not enhance performance and sometimes even deteriorated it. This could

possibly be due to the redundancy of positional data already encoded in the embeddings

or the introduction of noise.

To make the sentence-level model usable for the intended downstream task of snippet

identification while allowing the model to additionally learn how to classify snippets with

detailed labels, final linear classifiers were implemented on top of the second-level encoder

network. Building on the work by Glavaš and Somasundaran [38] and Malik et al. [72],

we introduce a multitask learning (MTL) setting with two parallel objectives:

• Main objective: predict snippets. A single linear classifier predicts the main

objective. Contrasting with Glavaš and Somasundaran [38], the main objective in

this study cannot be to predict whether a sentence starts a new segment or not.

This approach aimed at linear TS would not provide enough information to classify

certain sentences as not belonging to a snippet. Instead, we employ a TZ/SBD-

inspired approach, where sentences are tagged with BIO labels as either Beginning

(B), Inside (I), or Outside (O) of a region. Alternatively, B and I labels can be

merged into a binary setting, in which a sentence is simply classified as belonging

to a region or not.

• Auxiliary objective: predict detailed labels. The auxiliary objective is to

predict the detailed ontology labels for the snippets.

The intuition behind the presented MTL setting is to enable the model to learn

shared input representations in latent space, informing both the main and detailed

label classifiers, especially given that these two objectives are interdependent. Each

sentence belonging to the same snippet shares the same detailed label, while ”O”

predictions indicate sentences outside snippets with no detailed label. This shared

learning aims to improve performance on both objectives.

Due to the wide variety of detailed labels in the RGP ontology, the auxiliary objec-

tive classification is split by level. A separate neural network on top of the encoder

network is designated for each level of detailed label prediction. This should not

only result in better performance at each level and overall but also enable dynamic

adjustment of the architecture to different level predictions. Our model can be

41



configured using a single parameter (”levels”) to predict various combinations of

detailed labels. It can predict only the main objective (levels = [ ]), specific levels

(e.g. levels = [1]), or all levels simultaneously (levels = [0, 1, 2, 3]). Matching the

AML ontology, the detailed classifiers predict 1 (trivial), 19, 130, and 154 labels for

each respective level.

During training, the model’s loss is a weighted sum of the main and auxiliary objectives:

Ltotal = α · LMain + (1− α) ·
N∑
i=1

wi · LAuxiliaryi (5.1)

where each objective’s loss is the average cross-entropy loss over all samples [51]:

L =
1

M

M∑
o=1

CrossEntropyLosso (5.2)

CrossEntropyLosso = −
C∑
c=1

yo,c log(po,c) (5.3)

Here yo,c is 1 if class label c is correct for observation o, otherwise 0, and po,c is the

predicted probability of o being of class c. Each set of detailed labels i is weighted by wi.

The parameter α (alpha) controls the balance between the two objectives.

5.2.2 Dataset creation

The sentence-level model dataset creation involves a three-step approach: 1. block-wise

splitting a page into sentences, 2. computing the sentence embeddings, and 3. labelling

the sentences.

As the first two steps are detailed above, the labelling logic can be summarised as follows:

Each sentence on a page is mapped to token indices through a series of string cleaning

and matching steps. Subsequently, the start and end indices of each region obtained

during data pre-processing (Chapter 4) are used to label each sentence by comparing

their boundaries with those of the regions:

Let si = (starti, endi) be the start and end indices of the i-th sentence, and rj =

(startrj , endrj) be the start and end indices of the j-th region of a page. The label

Li for the i-th sentence is determined as follows:

Li =


B if ∃j : starti ≤ startrj < endi

I if ∃j : startrj < starti ∧ endi ≤ endrj

O otherwise

Sentences starting a new region are labelled ”B”, those entirely within a region are labelled
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”I”. These sentences are also assigned the detailed labels of the corresponding region.

Other sentences are labelled as ”O” and assigned the detailed label ”N/A”.

The final dataset is split according to the centralised split definitions and saved in a

HuggingFace DatasetDict8. Each sample contains the sentences, sentence embeddings,

bio-labels, detailed labels, and metadata (document ID and page ID) for one page.

5.2.3 Model optimisation and hyperparameter tuning

The sentence-level model variants were optimised in a comprehensive study following a

step-wise coarse-to-fine approach. First, we analysed the impact of basic model compo-

nents. Once the main setup was established, we tested the three different second-level

encoder network architectures and optimised their parameters.

In the initial phase, the three sentence-splitting methods were tested, and their perfor-

mance was evaluated on the AML validation set. Table 5.1 shows the validation per-

formance of the model in the final training epoch when training for 25 epochs with an

early stopping patience of 5 epochs based on validation loss9.

Sentence split (main objective) F1 Precision Recall Cohen’s kappa

SpaCy (Binary) 0.551 0.629 0.490 0.387
+5.58% NLTK (Binary) 0.582 0.631 0.540 0.397
+2.02% MultiLegalSBD (Binary) 0.594 0.631 0.560 0.394

-6.07% MultiLegalSBD (BIO) 0.558 0.648 0.490 0.349

Table 5.1: Comparison of different sentence-level model architectures. Using MultiLe-
galSBD for sentence splitting and following a binary main objective yielded the best
results.

Using a transformer encoder network with standard parameters10 and binary labels for

the main objective, MultiLegalSBD emerged as the most effective SBD tool, based on the

validation F1-score. This aligns with its strong performance in the legal domain [10]. Ex-

perimenting with a BIO schema decreased performance, likely because the higher granu-

larity of sentences does not require a BIO approach and the binary setting better addresses

class imbalance by reducing the dominance of ”O” samples.

We followed related research in calculating the following metrics for each model by in-

troducing a custom compute metrics function into the HuggingFace trainer class11 for

evaluation on the AML training, validation and test datasets [4, 7, 37, 38, 72, 83, 88].

8https://huggingface.co/docs/datasets/en/package_reference/main_classes#datasets.

DatasetDict
9https://huggingface.co/docs/transformers/en/main_classes/callback#transformers.

EarlyStoppingCallback
10Parameters: nhead = 8, hidden dim = 1024, nlayers = 8, dropout = 0.1
11https://huggingface.co/docs/transformers/en/main_classes/trainer#transformers.

Trainer.compute_metrics
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It should be noted that — in contrast to the metrics presented in Section 3.4, which are

employed to evaluate the similarity between two texts — the below metrics are calculated

to compare model predictions (i.e. BIO or detailed labels) versus the true labels in the

AML dataset.

• Precision, recall, and F1-score: Calculated across all samples using the standard

classification formulas shown in Equations 3.2-3.4.

• Cohen’s kappa: Measures inter-annotator agreement, i.e. predicted snippet labels

versus region labels, calculated using the scikit-learn library12 as

κ =
P (A)− P (E)

1− P (E)
(5.4)

where P (A) is the observed agreement, and P (E) is the expected agreement by

chance [13, 88, 96]. Scores typically range between 0 and 1, with 1 indicating

perfect agreement [88].

• pK: Metric introduced by Beeferman et al. [7] that measures segmentation accuracy

as the proportion of times segmentation boundaries are placed incorrectly and is

thus typically utilised in TS tasks [77]. We calculated pK using the segeval13 library

by first transforming BIO predictions into (binary) segmentation boundaries and

subsequently comparing the number of snippet boundaries within a sliding window

of size k:

pK =
1

N − k

N−k∑
i=1

I(b(i, i+ k) ̸= b′(i, i+ k)), k =
N

2M
(5.5)

where N is the total number of labels, M is the number of segments, b(i, i + k)

is the reference segmentation boundaries (regions), and b′(i, i + k) is the predicted

segmentation boundaries (snippets) within the window [7].

We specifically evaluate the snippet identifier systems using pK due to this study’s

close relatedness to TS. By treating snippet identification as a TS task, the pK

metric allows us to statistically determine the system’s accuracy in identifying the

correct beginning and end of a snippet — a capability precision, recall, and f1-score,

for example, lack [7]. We also considered WindowDiff, introduced by Pevzner and

Hearst [77] as an improvement over pK, but in line with related literature only

report pK here [4, 38]. A lower pK value indicates better performance [7].

Given the results in table 5.1, the sentence-level model with MultiLegalSBD as its SBD-

component and binary main prediction objective formed the basis for a comprehen-

sive hyperparameter optimisation (HPO) in which differently configured Bi-LSTM, Bi-

LSTM+CRF, and transformer networks were explored as the second-level encoder. The

HPO’s objective was intentionally defined as minimising the loss of the main prediction

12https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score
13https://segeval.readthedocs.io/en/latest/
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objective while testing if predicting additional detailed labels as part of the auxiliary

objective would improve performance.

nlayers levels h_dim dropout nhead
Hyperparameters
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levels N/A [1, 2] [1]
h dim 256 512 2048
nlayers 5 3 8
dropout 0.20 0.31 0.31
w lvl 0 N/A 0.14 0.55
w lvl 1 N/A 0.20 N/A
alpha N/A 0.49 0.90
n head N/A N/A 4

Best value 0.46 0.39 0.32

Figure 5.3: Hyperparameter importance (left) and best parameters with validation loss
(right) for each encoder network as identified during HPO. The transformer emerged as
the best model.

The HPO was conducted leveraging the HPO framework Optuna14 with default configura-

tions (e.g. TPESampler andMedianPruner). We optimised key parameters of the encoder

networks, including hidden dimensions (h dim), number of layers (nlayers), dropout rate

(dropout), and number of heads for the transformer model (n head), along with different

weighted auxiliary objectives (levels and w lvl <level>). Appendix D details all evaluated

settings, while Figure 5.3 illustrates hyperparameter importance and the best results per

encoder network type. We trained 50 distinct models per architecture.

The Bi-LSTM’s best performance on the validation set was inferior to the Bi-LSTM+CRF

and transformer models. The most important hyperparameter for the Bi-LSTM was

levels, while the other two models were mainly influenced by the number of layers and

hidden dimensions, suggesting that the auxiliary objective overwhelmed the Bi-LSTM.

In contrast, the BiLSTM+CRF and transformer-based sentence-level models benefited

from the additional information. Overall, a transformer-based encoder network, slightly

influenced by predicting the level 1 detailed label, emerged as the best encoder.

Based on these analyses, the final sentence-level model utilises MultiLegalSBD for sentence

splitting and a transformer encoder network with parameters as outlined in Figure 5.3.

The main objective follows a binary prediction strategy.

5.3 Token-level model

The token-level model more strongly incorporates key elements from TZ (Section 2.2.2)

and SBD (Section 2.2.3). Namely, unlike its sentence-level counterpart, it treats snippet

14https://optuna.org/
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identification as a token-level sequence labelling problem, employing strategies typical of

NER tasks. This allows for more granular text analysis, building on methods detailed by

Ajjour et al. [1], Gnehm [39], Gnehm and Clematide [40], and Sanchez [86]. Additionally,

the model leverages elements from the sentence-level architecture, incorporating the same

MTL framework and utilising pre-trained large language models (LLMs).

5.3.1 Model architecture

The token-level model, shown in Figure 5.4, only consists of a single BERT-based trans-

former network, which directly consumes tokens as input. To meet the 512 token limit,

pages are tokenized in a sliding window procedure. Pages with more than 510 tokens —

two tokens are reserved for BERT-like models’ special start (”[CLS]”), and end tokens

(”[SEP]”) — are divided into 510-token windows [49]. To mitigate the context loss from

splitting, we use overlapping windows, experimenting with overlaps of 64, 128, and 256

tokens [48]. Pages with fewer than 512 tokens are padded to the full sequence length.

EA EB EC E......

TA TB T...TC

BERT-based
Pre-trained Transformer

...

...

Level 0 Level 1 Level 2 Level 3

Detailed Labels Classifiers

"aml" "penalties" "offence""money-
laundering"

[CLS] Tok 1 Tok 2 [SEP]...

B OI E B OI E B OI E B OI E

512 tokensWindow(s) of

Figure 5.4: Architecture of the token-level model. Illustration based on [25, 44].

Leveraging pre-trained LLMs from HuggingFace’sAutoModel class15, the token-level model

does not require custom word embeddings or positional encoding, as these are handled

15https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModel
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internally based on the pre-trained data16. We experimented with RoBERTa models in

distil17, base18, and large19 versions, as well as two RoBERTa-based models, pre-trained

on legal documents: saibo/legal-roberta-base20 and lexlms/legal-roberta-base21, introduced

by Chalkidis et al. [17]. For all models, default settings22 were used.

The classification architecture mirrors the sentence-level model but incorporates a dif-

ferent main objective, where, next to the standard BIO classification objective, a BIOE

approach was tested. While distinguishing ending tokens may not be practical at the

sentence level due to the granularity required, it becomes relevant for token-based snip-

pet identification because special ”E” (Ending) tokens, such as periods (“.”), frequently

indicate region boundaries.

5.3.2 Dataset creation

A sample for the token-level model includes all tokens in one 512-token window of a page,

labelled with BIOE tags using the start and end indices of regions identified during data

pre-processing. For each region, the start token is labelled ”B”, the end token ”E” (or

”I” in the BIO schema), intermediate tokens ”I”, and all other tokens ”O”.

Research shows that BIO(E)-based labelling approaches, including those used in this

study, cannot straightforwardly handle nested elements [2]. This may lead to issues with

overlapping regions (Figure 4.1), where consecutive tokens may be incorrectly labelled as

”B”, for example. Due to the rarity of such cases (also see Table 6.4) and for the sake of

simplicity, addressing this issue is kept for future work.

Samples are saved in a HuggingFace DatasetDict. Each window-based sample contains

the tokenizer-assigned input IDs of the tokens included, the corresponding attention mask

to neglect padding tokens, the BIO(E) and detailed labels, and metadata (document ID,

page ID, and window ID). The final AML training dataset comprises 74,450 samples.

5.3.3 Model optimisation and hyperparameter tuning

Mirroring Section 5.2.3, the token-level model’s components were successively optimised

on the AML validation dataset. Specifically, different sliding window sizes, main objectives

(BIOE vs. BIO), and pre-trained models were evaluated (Table 5.2). Validation scores

were taken from the final training epoch after 15 epochs with early stopping patience = 4.

Increasing window overlap improved performance marginally between 64, 128, and 256 to-

kens. The BIOE schema yielded slightly better results than BIO while additionally offering

16https://huggingface.co/docs/transformers/model_doc/bert
17https://huggingface.co/distilbert/distilroberta-base
18https://huggingface.co/FacebookAI/roberta-base
19https://huggingface.co/FacebookAI/roberta-large
20https://huggingface.co/saibo/legal-roberta-base
21https://huggingface.co/lexlms/legal-roberta-base
22https://huggingface.co/docs/transformers/v4.40.2/en/main_classes/configuration
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Model F1 Precision Recall Cohen’s kappa

RoBERTa Win 64 (BIOE) 0.873 0.836 0.915 0.798
+0.30% RoBERTa Win 128 (BIOE) 0.876 0.837 0.919 0.802
+0.35% RoBERTa Win 256 (BIOE) 0.879 0.857 0.902 0.810

-0.91% RoBERTa Win 256 (BIO) 0.871 0.855 0.888 0.798

-0.05% Saibo Win 256 (BIOE) 0.871 0.851 0.891 0.796
-11.97% Lexlms Win 256 (BIOE) 0.766 0.703 0.842 0.629

Table 5.2: Comparison of different token-level model architectures. A RoBERTa-based
model with 256 token overlap in a BIOE setting yielded the best results.

greater label granularity — a characteristic beneficial for downstream applications. Inter-

estingly, the pre-trained models saibo/legal-roberta-base and lexlms/legal-roberta-base did

not outperform RoBERTa-base, likely due to smaller pre-training datasets or overfitting

to specific legal texts, reducing their transferability to the regulatory content analysed in

this study [17, 68]. Overall, the token-level model achieved strong validation performance,

with F1 scores close to 0.9 (+30 pp compared to the sentence-level model in Table 5.1).

Notably, the best model achieved a Cohen’s kappa score of 0.81, which is close to the

0.836 reported by Saravanan and Ravindran [88] for human annotators in related legal

tasks, and surpasses Krippendorff’s 0.80 threshold for good reliability [59].

Using RoBERTa-based transformer networks with default configurations, the token-level

model’s Optuna-HPO was solely focused on the evaluation of the effects of the auxiliary

objective. Here too, the HPO objective was defined as reducing the main objective loss.

Due to higher training costs, we evaluated 18 different token-level models. Results showed

no performance improvement including the auxiliary objective, possibly due to the added

complexity diverting the model’s focus from the main task. The details of the token-level

HPO are outlined in Table D.4.

Based on the optimisation study, a RoBERTa-based model with 256-token overlaps and

a BIOE main objective was chosen as the best token-level model for snippet discovery.

5.4 Post-processing and snippet creation

To identify FRI in legal documents and predict snippets, we developed a custom post-

processing algorithm to convert the systems’ BIO(E) predictions into snippets. The TS-

based models do not require post-processing as they directly predict snippet-like segments.

The post-processing algorithms for both the sentence-level model and token-level models

follow a similar strategy. The algorithm sequentially evaluates the predicted labels to

collect and merge the textual content for the snippets. ”B” labels mark the start of a

snippet, ”I” labels continue it, ”E” labels end it, and ”O” labels mark non-snippet content.

Figure 5.5 exemplifies this process.
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"b) Institutions must implement AML controls."

Ġfollowing . ĠInstitutionsĠguidelines ) Ġmust Ġimplement ĠAML Ġcontrols . ĠFailure Ġto Ġdo ĠsoĠb

O O O B I I I I I EI O O O O

Sequential processing

Snippet

Figure 5.5: Simplified example illustrating the post-processing algorithm for the main
objective. BIO(E) labels are used to construct snippets.

Our post-processing implementation accounts for a variety of prediction inaccuracies.

We allow ”I” labels to start snippets if they follow ”O” labels and end snippets if ”O”

labels follow ”B” or ”I” labels. To manage incorrect ”O” tokens within snippets, the

ignore o threshold parameter and a look-ahead mechanism were introduced. This param-

eter regulates how many ”O” sentences/tokens can be overlooked to continue a snippet

considering the following labels. Another parameter, min snippet length, ensures snippets

reach a minimum size.

To identify the optimal values for ignore o threshold and min snippet length, a grid search

was conducted for the token-level model. Exploring all 25 combinations of ignore o thresh-

olds = [0, 2, 4, 8, 10] and min snippet lengths = [0, 4, 8, 10, 12], the optimum on the AML

validation dataset, based on the highest Jaccard similarity of snippets against regions,

was identified as 4 and 10 respectively. For the sentence-level model, ignore o threshold

was set to 0. Min snippet length was not used due to the higher granularity of sentences.

Although allowing to skip certain ”O”-sentences would increase recall, it results in a

significant drop in precision and is thus discouraged.

For the auxiliary objective, a majority voting mechanism was implemented: detailed labels

for a snippet are determined by the most frequent label among its predicted elements.

5.5 Ensemble approach

In an effort to form a technical symbiosis between sentence-level and token-level ap-

proaches for snippet identification, we introduce an ensemble model. Figure 5.6 illustrates

the architecture of this model. By creating a mapping between the tokens and sentences of

a page, we can independently process the same input page through both models before bi-

narising the token-level predictions and utilising the mapping to aggregate the token-level

model’s predictions to a sentence-level.

For all samples i, the final sentence-level predictions of both models, Ptoken and Psentence,

are combined through a normalised weighted average (default: wtoken = wsentence = 0.5):

Pcombined =

(
Ptoken · wtoken + Psentence · wsentence∑
i (Ptoken · wtoken + Psentence · wsentence)i

)
(5.6)
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Figure 5.6: Inference process using the ensemble model.

It should be noted that the ensemble does not require a dedicated training/dataset. In-

stead, it relies on a pre-trained token-level and sentence-level model. Given the ensemble

model ultimately works on a sentence level, the sentence-level model’s post-processing

algorithm can be applied to obtain the final snippets.

5.6 The snippet identifier system: FRIDAY

This chapter has presented the Financial Regulatory Information Discovery and Anno-

tation sYstem (FRIDAY). Figure 5.7 illustrates how the different components and chap-

ters of our study integrate to form an end-to-end snippet identifier system. While pre-

processing (Chapter 4) and evaluation (Chapter 6) are crucial for development and train-

ing, only the components highlighted in green are necessary for the practical deployment

of FRIDAY.

XML
files

Nested
dict

Pre-
processing
algorithm

1. Region-page text matching
2. Region refinement
3. Baseline snippet creation
4. Pre-tokenization

HF
Dataset

Dict

Dataset
creation

Split information

Post-
processing

Pre-
dictions

Evaluation

Chapter 3

Exchangeable predictor component

Chapter 4 Chapter 5

Chapter 6

Snippet
identifier
model

Legal
documents

Identified
FRI snippets

Figure 5.7: Overview of the snippet identifier system FRIDAY.
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FRIDAY is designed to be highly modular. Not only is each component of the system

readily maintainable and adjustable but, as shown in this chapter, the predictor compo-

nent, i.e. the snippet identifier model, is also easily exchangeable. Notably, all our models

are fully integrated and compatible with the HuggingFace ecosystem23. We evaluate dif-

ferent model variants in the following chapter. In addition to the ML models presented

in this work, other architectures are also conceivable.

With FRIDAY we contribute a ready-to-use end-to-end system with significant applica-

tions in both academia and industry.

23https://huggingface.co/

51

https://huggingface.co/


Chapter 6

Evaluation

FRIDAY, in various configurations, was evaluated primarily on the main objective of

identifying FRI snippets in legal documents while also assessing auxiliary objective per-

formance. The evaluation included both quantitative and qualitative methods.

Quantitatively, the focus was on identifying the best FRIDAY version using linguistically

informed metrics, with a TS-optimised token-level model showing the best performance.

The system’s performance in predicting detailed labels was robust, achieving significant

accuracy even for complex levels of the RGP ontology. Additionally, FRIDAY demon-

strated strong generalisation capabilities to the unseen cybersecurity datasets, maintain-

ing similar performance to the AML theme.

Qualitatively, we analysed the system’s prediction behaviour, recognising its strengths

in correctly labelling continuous text segments. We also examined the impact of the

post-processing algorithm and potential areas for further improvement.

6.1 Quantitative evaluation

As part of the quantitative evaluation, all different system identifier architectures, includ-

ing the baseline models, were considered. Experiments were run on the High Performance

Computing (HPC) platform provided by the Cambridge Service for Data Driven Discovery

(CSD3). Specifically, one NVIDIA A100-SXM4-80GB GPU was utilised in combination

with 32 cores of an AMD EPYC 7763 64-Core Processor 1.8GHz and 250 GiB of RAM1.

6.1.1 Evaluation methodology and metrics

A custom evaluation process was developed to evaluate FRIDAY’s capabilities in identi-

fying snippets in unseen legal documents. Predicted snippets were mapped to the best-

matching region using maximum Jaccard similarity to determine the region that the model

1https://docs.hpc.cam.ac.uk/hpc/user-guide/a100.html
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most likely aimed to predict.

Given the importance of linguistic accuracy in this study, we used metrics that can ac-

count for the quality of matching texts and accurately capturing content. Concretely, we

calculated the seven different metrics for evaluating text similarity described in Section 3.4

for all identified region-snippet pairs to assess downstream task performance.

It is noteworthy that calculating metrics based on tokens created by the RoBERTa BPE

tokenizer establishes a significantly more challenging evaluation objective than evaluating

unformatted text. This is because the RoBERTa tokenizer not only creates sub-word

tokens but also includes formatting cues in its tokens (e.g. ”Ġ”, or ”Ċ” prefixes)2. For

consistency, the sentence-level and ensemble models, whose SBD components remove

formatting elements, were evaluated using the tokenized concatenated sentences of a page.

6.1.2 Predicting snippets in unseen AML documents

All variants of FRIDAY were first evaluated based on their performance in predicting

unseen AML documents. For this purpose, the models made predictions on the 173 test

documents comprising 6,930 pages of unseen AML regulations.

Main Objective

Table 6.1 summarises the performance of all models developed as part of this study,

evaluated as described in Section 6.1.1 and ordered by their ROUGE-1-F score.

Model
ROUGE-

1-F
↑ ROUGE-

2-F
ROUGE-

L-F
Jaccard F1 P R

Time/Page
(ms)**

GraphSeg (baseline) 0.63 0.57 0.63 0.51 0.62 0.52 0.79 136.42
Snippeting alg. (baseline) 0.66 0.61 0.66 0.53 0.61 0.48 0.84 24.92
Sentence* 0.72 0.67 0.72 0.61 0.68 0.62 0.75 18.71
Blocks 0.75 0.70 0.74 0.69 0.78 0.74 0.83 21.07
Token-base-main+auxil. 0.75 0.71 0.75 0.72 0.70 0.63 0.79 20.48
Token-large-main 0.78 0.74 0.78 0.67 0.69 0.58 0.84 56.26
Ensemble* 0.79 0.75 0.79 0.70 0.75 0.64 0.90 87.46
Token-distilroberta-main 0.84 0.81 0.84 0.74 0.72 0.64 0.81 8.28
Token-base-main 0.84 0.81 0.84 0.74 0.72 0.64 0.82 17.02
Token-base-pk-main 0.86 0.83 0.86 0.77 0.74 0.65 0.84 17.48

*evaluated on unformatted text
**Maximum batch sizes used during inference: 128 (Blocks, GraphSeg), 512 (Token-large-main), 2048
(other token-level models), all sentences of a page (Sentence, Ensemble)

Table 6.1: Comparison of the different snippet identifier systems’ performances on the
AML test dataset. The token-level models achieved the highest ROUGE and Jaccard
similarity scores.

The examined models include the Blocks, sentence-level (”Sentence”), token-level (”To-

ken”), and Ensemble model as well as the Snippeting algorithm and GraphSeg model as

2https://huggingface.co/docs/transformers/en/model_doc/roberta#transformers.

RobertaTokenizer
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baselines. For the token-level model, different RoBERTa variants were tested. Specifically,

we tested RoBERTa-base, RoBERTa-large [68], and the knowledge-distilled version dis-

tilroberta [87] to optimise for different resource scenarios. Additionally, a RoBERTa-base

model was trained on both the main and auxiliary objectives (levels = [1]).

Based on the systems’ performances on unseen AML documents, the following observa-

tions can be made:

• GraphSeg: The GraphSeg baseline model exhibits the lowest performance across

nearly all metrics. In line with Section 5.1.3, this confirms that GraphSeg seg-

ments are often insufficient to accurately represent regions. Furthermore, the model

demonstrates the by far slowest inference time per page due to the need to execute

the unsupervised GraphSeg algorithm [37] and the RoBERTa sequence classifier.

• Snippeting algorithm: The baseline snippeting algorithm runs without GPU

acceleration and demonstrates an acceptable inference time. It performs similarly

to GraphSeg but has a high recall of 84% due to its tendency to split page texts by

size, creating large segments likely to capture snippets (Section 3.2.1).

• Sentence-level model: Despite having the worst recall (0.75), the sentence-level

model outperforms the baseline models across all other metrics and is faster. Yet, it

is inferior to this study’s other main models. This is likely due to its rather complex

architecture and data pipeline, including two transformers and an SBD component

whose accuracy strongly impacts the performance of the whole model. Furthermore,

the model is less flexible than the token-level model due to its higher abstraction.

• Blocks: Given the close similarity between blocks and regions (Section 3.4), it is

unsurprising that the Block model achieves competitive performance, outperforming

both baselines and the sentence-level model. Among all models, it achieves the

highest precision and F1-score, with a high recall of 0.83 and good inference speed.

• Token-level models: The token-level models overall perform the best, significantly

outperforming both baselines and the sentence-level model. They achieve up to 20

pp higher ROUGE and Jaccard similarity scores than the baseline models while

maintaining strong recall and F1 scores. Even the token-level model integrating the

auxiliary objective is superior to the previously mentioned models, although this

model and the RoBERTa-large-based model show the lowest performance among

the token-level models. The distilroberta and RoBERTa-base token-level models

exhibit a remarkably stronger performance while also demonstrating the most effi-

cient inference speeds, as low as 8.28 ms per page.

• Ensemble: While the ensemble model does not outperform the sentence-level and

token-level models — likely due to the comparatively poor performance of the former

— integrating both models significantly improved performance compared to the

sentence-level model alone. In fact, the ensemble model is the only one to achieve
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a recall of 0.9 with solid performance overall. However, this hybrid approach comes

at the expense of computational efficiency.

In summary, the token-level model-based snippet identifier system shows the strongest

performance in identifying snippets in unseen legal documents, with ROUGE and Jaccard

similarity metrics of up to 0.86 and 0.77, respectively. We reiterate that recall should be

prioritised over precision in the context of this work (Section 3.4), and the token-level

model exhibits desirable characteristics in this respect. Additionally, it performs well

while maintaining the original text formatting, making the results even more noteworthy.

Depending on use cases and priorities, certain models may be preferred. For instance,

our distilroberta-based system offers near-best performance while being twice as fast and

computationally more efficient [87].

Among all models, token-base-pk-main emerged as the best and is detailed below.

The Token-base-pk-main model

To further enhance the strong performance of our token-level architecture, we experi-

mented with a variant optimised for a TS-related objective. Given the close relationship

between snippet discovery and TS, optimising for TS should improve downstream perfor-

mance. Therefore, we trained a RoBERTa-base token-level model on the main objective

as before. However, instead of using validation loss for early stopping, we monitored the

pK metric (Section 5.2.3), typically employed in TS tasks [4, 38, 77]. Figure 6.1 shows

the training process of this model, dubbed token-base-pk-main. The model continued

training even as the validation loss increased, which would usually indicate overfitting,

and stopped once the pK validation score stopped decreasing.
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Figure 6.1: Training process of the token-base-pk-main model. The model continued
training despite increasing validation loss as the validation pK score decreased.

The pK validation results are robust, considering similar models, although limited in

comparability, achieved pK values of 12.50% at best on related TS tasks [4]. Table 6.1

confirms that a TS-optimised token-level model outperforms traditionally trained models.
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Given its superior performance, we select the token-based pk-main model as the final

predictor component for FRIDAY.

Auxiliary Objective

Although this work focuses on developing a first-of-its-kind NLP system to discover FRI

in legal documents, the introduction of the auxiliary objective into the token-level model

allows FRIDAY to also address our extension goal of matching the identified snippets

with labels from the RGP ontology.

Figure 6.2 illustrates the F1-score, precision, and recall on the AML validation set for a

version of FRIDAY extended with the auxiliary objective of predicting the detailed labels

for the second (”Level 1”) and third level (”Level 2”) of the ontology. The BIOE labels

(”Main”) performance is shown in grey for comparison. The model was trained with

alpha = 0.65 to maintain focus on the main objective. Hence, the auxiliary objective

performance could likely be improved with further optimisations.

For the 19 labels of the second level, the model achieves an F1 score of around 0.6 on the

validation set. This performance drops by about 0.26 on average for predicting one of the

130 labels in the third level, where the high number of classes and elevated level of detail

significantly aggravate the prediction task.
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Figure 6.2: Validation performance for the auxiliary objective. Performance decreases
with added detail. Predicting the first ontology level (”aml”) is trivial, while the fourth
level is even more complicated than the third.

On the AML test set, the performance of the model remains stable, with F1 scores of 0.58

and 0.33, precision of 0.6 and 0.36, and recall of 0.59 and 0.35 for the first and second

levels, respectively.

6.1.3 Generalisation capabilities

To further understand the capabilities of FRIDAY, the system was tested on 1,694 doc-

uments from the CYBER I and CYBER II datasets, expanding the previous evaluation

with an additional 53,570 pages of unseen FRI. This methodology aimed to determine

how well FRIDAY, solely trained on AML documents, can generalise to new domains.
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We also evaluated the two baselines (GraphSeg and snippeting algorithm) and Blocks on

this data.

Table 6.2 and Table 6.3 show the results for CYBER I and CYBER II, respectively.

For simplicity, we only report the ROUGE score for the longest common subsequence

(ROUGE-L-F). The percentage values indicate the performance change compared to the

AML test set.

Model ROUGE-L-F ↑ Jaccard F1 Precision Recall

GraphSeg (baseline) 0.61 (-3%) 0.50 (-2%) 0.63 (+0%) 0.54 (+5%) 0.74 (-7%)
Snippeting alg. (baseline) 0.64 (-2%) 0.52 (-3%) 0.60 (-3%) 0.46 (-4%) 0.83 (-1%)
Blocks 0.77 (+5%) 0.73 (+5%) 0.80 (+3%) 0.75 (+2%) 0.86 (+4%)
FRIDAY 0.83 (-3%) 0.74 (-3%) 0.73 (-0%) 0.67 (+3%) 0.81 (-4%)

Table 6.2: Comparison of different model performances on the unseen CYBER I dataset.

Model ROUGE-L-F ↑ Jaccard F1 Precision Recall

GraphSeg (baseline) 0.63 (+1%) 0.53 (+3%) 0.66 (+5%) 0.61 (+18%) 0.71 (-10%)
Snippeting alg. (baseline) 0.70 (+7%) 0.58 (+10%) 0.67 (+9%) 0.55 (+15%) 0.83 (-0%)
Blocks 0.76 (+3%) 0.71 (+3%) 0.80 (+2%) 0.79 (+7%) 0.81 (-3%)
FRIDAY 0.84 (-2%) 0.75 (-2%) 0.76 (+3%) 0.72 (+10%) 0.80 (-5%)

Table 6.3: Comparison of different model performances on the unseen CYBER II dataset.

Contrary to Ajjour et al. [1], who reported significant performance drops in cross-domain

tasks due to the reliance on domain-specific vocabulary, FRIDAY maintained strong per-

formance in the unseen domain of cybersecurity, similar to the AML results (Table 6.1).

The system still outperformed all other models on ROUGE-L-F and Jaccard similarity.

Notably, almost all models exhibited lower recall and higher precision, especially in the

more diverse CYBER II domain. This trend suggests that in a cross-domain generalisation

setting, the models struggle to identify all relevant regulations — likely due to domain-

specific language differences. However, identified regulations were still recognised with

high confidence. Thus, while the models are precise in recognising familiar patterns, they

may miss relevant content expressed differently in the new domain.

Overall, the analysis shows that FRIDAY has effectively learned and generalised a robust

understanding of the important linguistic and textual features needed to identify FRI in

unseen legal documents.

6.2 Qualitative Evaluation

To gain qualitative insights into FRIDAY’s predictive behaviour, we evaluated its BIOE-

based main objective through an analysis of consecutive token predictions, following re-

lated research [1]. Table 6.4 presents a confusion matrix for these predictions on the AML

test dataset.
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Predictions

Gold B-B B-I B-O I-B I-I I-E I-O E-B E-I E-E E-O O-B O-I O-E O-O

B-B 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
B-I 6 2.9k 101 4 2.6k 2 31 0 8 0 71 23 172 0 1.3k
B-O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I-B 0 2 0 26 535 61 4 0 0 0 2 59 11 2 60
I-I 1 1.4k 36 289 1.8m 844 4.9k 0 189 0 637 1.1k 5.2k 9 181.1k
I-E 0 2 0 1 2.0k 3.7k 142 0 1 8 18 0 62 62 812
I-O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E-B 0 1 0 0 28 0 2 0 1 0 19 1 0 0 4
E-I 0 0 0 0 56 0 7 0 3 0 40 0 0 0 4
E-E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E-O 0 0 0 0 1.4k 27 527 0 64 0 3.6k 0 24 0 936
O-B 2 25 1 143 1.7k 16 19 0 0 0 7 2.8k 259 0 1.4k
O-I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O-E 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
O-O 1 1.0k 149 93 505.8k 1.1k 5.5k 0 51 5 1.1k 1.1k 5.7k 70 4.4m

Table 6.4: Confusion matrix of consecutively predicted labels. Overall, FRIDAY exhibits
robust performance, with the precise localisation of the beginning and ending of snippets
being more challenging than within-snippet predictions.

The qualitative analysis reveals strengths and potential for improvement in FRIDAY’s

snippet identification capabilities.

As strengths, we first highlight the model’s strong ability to correctly label continuous

segments within or outside of snippets, learning that ”I” labels within snippets and ”O”

labels outside of snippets typically follow each other in groups. In the unseen AML

documents, FRIDAY correctly labels these tokens in 1.8 million and 4.4 million cases,

respectively. Secondly, FRIDAY was capable of locating the beginning and end of snippets

precisely to the exact token in the majority of the cases, as indicated by its predictions

for the B-I, I-E, E-O, and O-B label pairs. The confusion mainly occurs with I-I or O-O

in these cases and results from the challenging nature of this precise task (Section 2.2.3),

sometimes leading to slightly offset snippets or entirely missed ”B” or ”E” labels.

Areas for improvement can be seen in the confusion among inner tokens. Although the

overall performance of FRIDAY in this regard is very robust, the model makes notable

confusions between O-O and I-I (> 500k confusions) and vice versa (> 180k confusions).

I-O and O-I sequences can also be included here.

We argue that most confusions, such as imperfectly identified beginnings or endings and

interruptions of ”I” labels by ”O” labels or vice versa, generally do not significantly

impact downstream snippet creation. These issues can be effectively handled through the

post-processing algorithm (Section 5.4). The ignore o threshold, for instance, mitigates

confusions between I-I and O-O, O-I, or I-O. Similarly, min snippet length helps manage

the opposite scenario. Additional measures could further refine snippet creation.
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6.3 Summary

This chapter demonstrated that the snippet identifier system developed in this work

is capable of accurately discovering FRI in legal documents. Furthermore, the system

can additionally handle the auxiliary objective of matching the identified snippets with

detailed labels from the RGP ontology.

Reflecting on the requirements defined in Section 2.2.4 and Section 3.4, we conclude that

our Financial Regulatory Information Discovery and Annotation sYstem (FRIDAY) is

not only the first NLP tool capable of solving the research question posed in this study,

but also, in contrast to the baseline models mentioned, fulfils all the desired characteristics

outlined in this report and summarised again in Table 6.5.

Desirable Features Explanation
Snip.

Alg.

Graph-

Seg

FRI-

DAY

I Adaptive bound-
ary detection

Recognises boundaries between words, sentences,
paragraphs, or pages to accommodate different
forms of textual units.

2 2 2�

II Unrestricted
snippet identifi-
cation

Identifies an unrestricted number of snippets and
is not constrained to classifying every part of a
text.

2 2� 2�

III Legal under-
standing

Interprets the complex format, language, and
structure of legal documents.

2 2 2�
IV Advanced NLP

techniques
Utilises state-of-the-art sequence models beyond
handcrafted rules and features.

2 2 2�
V Robust training

datasets
Trained on extensive, expertly annotated
datasets of financial regulations.

2 2 2�
VI Page-level snip-

pet identification
Identifies snippets page by page, even when the
page length exceeds 512 tokens.

2� 2� 2�
VII Flexibility in

snippet size
Accommodates varying sizes and numbers of
snippets on a page.

2� 2� 2�
VIII Broad regulatory

understanding
Accurately handles differently formatted docu-
ments from nearly a hundred jurisdictions world-
wide.

2 2 2�

Table 6.5: Evaluation of different snippet identifier systems against the desired features.

As humans will continue to play a decisive role in the analysis and interpretation of

legally relevant financial regulations — at least for the foreseeable future — FRIDAY can

significantly enhance their efficiency and accuracy, reducing the time and effort required

to process complex legal documents.
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Chapter 7

Summary, conclusion, and future

work

The growing complexity and volume of financial regulations pose significant challenges

for financial institutions striving to maintain compliance. While the demand for RegTech

to alleviate this burden is immense, the intricacies of legal language complicate legal NLP

and the automated processing of financial regulatory information (FRI). To bridge this

key research gap, this study explored how NLP can be applied to identify and classify text

segments containing relevant FRI within structured legal documents. We introduce the

Financial Regulatory Information Discovery and Annotation sYstem (FRIDAY) — the

first end-to-end NLP system capable of discovering and classifying FRI in unseen legal

documents.

7.1 Summary and conclusion

FRIDAY was developed based on a real-world dataset of 1,149 expertly annotated doc-

uments containing financial regulations in the domain of anti-money laundering from

around the world. This work analysed the idiosyncrasies of these legal texts and intro-

duced a tool for dynamic comparison of different textual components from individual

pages. Additionally, we present a robust pre-processing algorithm capable of accurately

identifying and refining erroneous OCR-extracted text.

During the development of FRIDAY, five novel NLP systems capable of discovering FRI

in legal documents were introduced, and ten different configurations were evaluated. The

most successful version of FRIDAY operates on a token level and incorporates a state-

of-the-art pre-trained RoBERTa model optimised for text segmentation in a multitask

learning setting. FRIDAY can be trained to discover and optionally match FRI with

labels from different node levels of the Regulatory Genome Project ontology.

With ROUGE scores in the mid-80s, FRIDAY significantly outperforms baseline ap-
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proaches from research and industry by nearly 37%. It also generalises well to unseen

domains while maintaining strong performance. When tested on an additional 53,570

pages of financial cybersecurity regulations, FRIDAY’s performance remained almost sta-

ble, with a decrease of at most 5%.

7.2 Limitations and future work

While this study has made significant contributions in the automated discovery of FRI,

several limitations and potential areas for future work have been identified:

• Extended snippet spans and context: The systems proposed in this work were

intentionally restricted to identifying snippets within individual pages to replicate

the human annotation process. Yet, the same FRI can span multiple pages. While

extending the model’s scope would most likely require an updated annotation pro-

cess, enhancing the model to consider the content, context, and structure of an

entire document could improve snippet identification and classification. However,

this would require architectures capable of handling significantly larger context win-

dows and a different approach to the task in general.

• Overlapping regions: Due to the way FRIDAY is set up around the inherently

sequential NER-inspired BIO(E)-labelling approach, the model cannot handle over-

lapping FRI (i.e. text segments covering more than one type of FRI). Future work

may investigate and develop methods to address nested elements effectively. Here,

exploring alternative labelling schemes (e.g. nested NER), or more sophisticated

sequence labelling models could provide sensible starting points.

• Improved label dependencies analysis: FRIDAY may produce incorrect label

sequences like ”I-O-I”, due to insufficient learning of dependencies between labels.

Although relatively rare and already mitigated through post-processing, future ap-

proaches could investigate different techniques, such as incorporating a CRF layer

on top of the encoder, to further improve label consistency.

• Extended and diversified dataset: While this study’s dataset already repre-

sents a comprehensive repository of legal documents from around the world, the

robustness and performance of FRIDAY could be further enhanced by adding data

containing regulations from additional themes such as cryptocurrency or environ-

mental, social and governance (ESG). Furthermore, multi-lingual versions of the

system could be explored. A larger and more diverse dataset may enable smaller

models to achieve results comparable to or better than those presented in this study.

• Further investigation of the auxiliary objective and its integration: While

this study investigated matching snippets with ontology labels (auxiliary objec-

tive), it focused on discovering FRI in legal documents and optimising models for
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this purpose. Therefore, future work may concentrate on optimising the auxiliary

objective of classifying the discovered FRI. Since this study only integrated detailed

labels from the AML theme, investigating FRIDAY’s generalisation capabilities for

detailed labels across different themes, such as cybersecurity, would be valuable.

Furthermore, the integration of both losses warrants further exploration. Different

integration techniques and the introduction of regularisation terms are conceivable

and could be used to constrain the objectives in beneficial ways.

• Improved sentence-level models: The inferior performance of the sentence-level

model compared to the token-level approaches may partly be attributed to the ac-

curacy of the underlying sentence splits. Improving these splits could significantly

enhance sentence-level systems. Additionally, alternative embedding models could

be explored to obtain more accurate sentence embeddings and improve overall per-

formance.

• Further pre-processing optimisations: Although the custom pre-processing al-

gorithm (Chapter 4) handles various OCR mismatches, it is not faultless and oc-

casionally makes wrong refinements that unintentionally introduce noise into the

training data. Further optimisations of this algorithm or upstream changes en-

suring cleaner training data, such as improved annotation processes, could further

improve FRIDAY’s performance on the downstream task.

7.3 Implications

FRIDAY significantly advances research in the field of legal NLP and RegTech by address-

ing the unique challenges of automatically and accurately processing financial regulatory

documents. With FRIDAY, we introduce a first-of-its-kind system: an NLP tool designed

to discover FRI in unseen legal documents. This tool integrates techniques from text seg-

mentation, text zoning, and sentence boundary detection. FRIDAY offers a ready-to-use

practical solution for regulatory compliance, enhancing the ability of a wide spectrum

of stakeholders like financial institutions and regulatory bodies to automatically process

and interpret FRI. The system can streamline compliance efforts, reduce manual labour

and increase the overall accuracy of regulatory analysis and compliance with financial

regulations.
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Knowledge Graphs, M. Acosta, P. Cudré-Mauroux, M. Maleshkova, T. Pellegrini,

H. Sack, and Y. Sure-Vetter, Eds., Cham: Springer International Publishing, 2019,

pp. 272–287. doi: 10.1007/978-3-030-33220-4_20.

[66] N. Limsopatham and N. Collier, “Bidirectional LSTM for Named Entity Recog-

nition in Twitter Messages,” in Proceedings of the 2nd Workshop on Noisy User-

generated Text (WNUT), B. Han, A. Ritter, L. Derczynski, W. Xu, and T. Bald-

win, Eds., Osaka, Japan: The COLING 2016 Organizing Committee, Dec. 2016,

pp. 145–152. [Online]. Available: https://aclanthology.org/W16-3920.

[67] C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” in Text

Summarization Branches Out, Barcelona, Spain: Association for Computational

68

https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.48550/arXiv.1803.09337
https://assets.kpmg.com/content/dam/kpmg/uk/pdf/2018/09/regtech-revolution-coming.pdf
https://assets.kpmg.com/content/dam/kpmg/uk/pdf/2018/09/regtech-revolution-coming.pdf
https://doi.org/10.4135/9781071878781
https://fintechmagazine.com/articles/regtech-is-growing-but-what-next-for-the-sector
https://fintechmagazine.com/articles/regtech-is-growing-but-what-next-for-the-sector
https://doi.org/10.48550/arXiv.1603.01360
https://doi.org/10.48550/arXiv.1603.01360
http://www.tara.tcd.ie/handle/2262/86849
http://www.tara.tcd.ie/handle/2262/86849
https://doi.org/10.1007/978-3-030-33220-4_20
https://aclanthology.org/W16-3920


Linguistics, Jul. 2004, pp. 74–81. [Online]. Available: https://aclanthology.

org/W04-1013.

[68] Y. Liu et al., RoBERTa: A Robustly Optimized BERT Pretraining Approach, Jul.

2019. doi: 10.48550/arXiv.1907.11692.

[69] A. Lyte and K. Branting, “Document Segmentation Labeling Techniques for Court

Filings,” Jun. 2019.

[70] U. B. Mahadevaswamy and P. Swathi, “Sentiment Analysis using Bidirectional

LSTM Network,” Procedia Computer Science, International Conference on Ma-

chine Learning and Data Engineering, vol. 218, pp. 45–56, Jan. 2023. doi: 10.

1016/j.procs.2022.12.400.

[71] M. Maignant, T. Poibeau, and G. Brison, “Text Zoning of Theater Reviews: How

Different are Journalistic from Blogger Reviews?” In Proceedings of the Workshop

on Natural Language Processing for Digital Humanities, M. Hämäläinen, K. Alnaj-
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Appendix A

Relevant machine learning

techniques

A.1 Long Short-Term Memory (LSTM)

LSTMs, developed by Hochreiter and Schmidhuber [46] in 1997 and iteratively optimised

in the following years [108], are advanced recurrent neural networks (RNNs) [51]. Unlike

basic feed-forward neural networks, RNNs chain nodes to handle sequential inputs of

varying lengths, making them effective for NLP tasks like language modelling, sequence

classification and language generation [51]. Conventional RNNs, however, are unable

to retain long-term dependencies as the sequential computing process leads to gradients

becoming significantly large or small over time, rendering training of RNNs for long-range

tasks extremely difficult or even impossible (exploding/vanishing gradient problem) [46].

Figure A.1: Structure of a typical LSTM layer with three gates and peephole connections.
Figure taken from Yu et al. [108].
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A.1.1 Core Architecture

LSTMs address the challenge of retaining long-range dependencies by introducing an

explicit context layer for extended memory [51, 108]. Each LSTM cell includes both short-

term and long-term memory paths, allowing the model to learn what relevant information

to retain over time while forgetting unnecessary details [46]. Research shows that LSTMs

are effective for processing sequential data and often achieve state-of-the-art performance

in numerous NLP tasks [40, 50].

Figure A.1 illustrates the unique architecture of LSTM [46] networks based on three

gates : forget, input, and output gates, which regulate the flow of information [108]. Each

gate within the LSTM unit operates based on a combination of the current input xt,

the previous output ht−1 (short-term memory), and the previous cell state ct−1 (long-

term memory) [108]. Furthermore, peephole connections P can be added to each gate,

enabling LSTMs to consider ct−1 as additional context for their gate decisions [35].

The forget gate of an LSTM determines what percentage of the long-term memory is

discarded [36]. It takes the previous output ht−1 and the current input xt as arguments

and applies a sigmoid function σ to it, which results in values between 0 and 1 [108]. The

resulting value ft is subsequently multiplied by the previous cell state to determine what

”long-term memory” to retain: ft = σ(Wfhht−1 +Wfxxt + Pfct−1 + bf ) [108].

The input gate controls the addition of new information to the cell state (i.e. it updates

the long-term memory) [46]. It consists of a sigmoid layer and a tanh layer [108]. While the

latter creates a potential long-term memory, the sigmoid layer determines what percentage

of that potential memory to add to the long-term memory [108]:

it = σ(Wihht−1 +Wixxt + Pict−1 + bi)

c̃t = tanh(Wchht−1 +Wcxxt + bc)
(A.1)

Together with the forget gate, the input gate creates the updated cell state ct = ft · ct−1+
it · c̃t [108]. The final gate, the output gate, determines the next hidden state ht, which is

passed to the next LSTM cell or used for predictions [46]. It is the product of a sigmoid

and tanh function and contains information based on the last cell’s hidden state ht−1, the

input xt as well as the updated cell state ct [108]:

ot = σ(Wohht−1 +Woxxt + Poct + bo)

ht = ot · tanh(ct)
(A.2)

The components above make up one LSTM layer [108]. To improve performance, these

layers can be stacked, where the input x
(l)
t for the l-th layer (where l ≥ 2) is derived from

the hidden state h
(l−1)
t of the preceding layer, adjusted by a dropout factor δ

(l−1)
t [32, 108].
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In the ready-to-use version of an ”unrolled” LSTM (i.e. many (stacked) LSTM cells are

chained together), each cell can then be used to process one input of a sequence [32, 108].

A.1.2 Bidirectional LSTMs

Conventional RNNs and LSTMs capture only previous context [41]. To utilise both

past and future contexts, bidirectional RNNs and, subsequently, Bi-LSTMs were intro-

duced [41]. Research shows that Bi-LSTMs often outperform unidirectional LSTMs in

sequence labelling tasks where understanding both contexts can provide crucial informa-

tion (e.g. NER) [47, 66, 70].

In contrast to unidirectional LSTMs, Bi-LSTMs consist of two LSTM layers that process

the input sequence in opposite directions (forward and backward) [41]. Following Yu et

al. [108], this architecture is represented mathematically as follows:

−→
ht =

−→o L
t · tanh(

−→
h L

t ),
←−
ht =

←−o L
t · tanh(

←−
h L

t ) (A.3)

At each time step t, the outputs from the forward and backward pass can be combined

through, for example, concatenation, simple addition, or a linear transformation of both

hidden states: yt = W−→
h y

−→
ht +W←−

h y

←−
ht + by [108].

A.1.3 Integration with Conditional Random Fields (CRFs)

Conditional Random Fields (CRFs), introduced by Lafferty et al. [61] in 2001, are often

employed with LSTMs to enhance their capabilities, particularly in structured prediction

tasks where the relationship between labels is crucial [39, 47, 50]. CRFs provide a prob-

abilistic method to model the dependencies between labels and allow predictions that

consider the context of the entire sequence [61]. Research shows that (Bi-)LSTM+CRF

architectures often outperform conventional (Bi-)LSTM-based approaches in tasks with

interdependent labels, such as TZ, NER, and other sequence labelling tasks [47, 50].

Lafferty et al. [61] define a Conditional Random Field (CRF) as follows:

”Definition. Let G = (V,E) be a graph such that Y = (Yv)v∈V , so that Y is indexed by

the vertices of G. Then (X, Y ) is a conditional random field in case, when conditioned

on X, the random variables Yv obey the Markov property with respect to the graph:

p(Yv | X, Yw, w ̸= v) = p(Yv | X, Yw, w ∼ v), where w ∼ v means that w and v are

neighbors in G.”

When combined with CRFs, LSTMs are used to generate latent feature representations

of the input data [79]. Instead of directly using the LSTM’s output for predictions, they

are fed into a CRF layer (i.e. they provide the features for a CRF model) [50, 79]:
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P (y|x) = exp(
∑

i ϕ(x, yi, yi−1))∑
y′ exp(

∑
i ϕ(x, y

′
i, y
′
i−1))

(A.4)

Here, ϕ represents a feature vector derived from LSTM outputs, and yi are the labels

for each element in the sequence [23]. Research has shown that the combination of

LSTMs with CRFs sequence models usually provides strong performance in NER and

other sequence-prediction tasks [40, 69, 79].

A.2 Transformer

The transformer architecture, introduced by Vaswani et al. [106] in 2017, represents a

significant milestone and shift away from the previously dominant RNN-based architec-

tures in sequence processing tasks. It has significantly improved performance across a

wide range of NLP tasks, often setting a new state-of-the-art, and consequently mak-

ing transformers a highly popular NLP architecture [14, 55, 110]. Through its attention

mechanism, transformers are able to capture long-range dependencies and contexts with-

out being limited by long training times like RNNs and LSTMs [106]. Unlike inherently

sequential architectures, transformers leverage attention to process all inputs simultane-

ously, which allows them to benefit from a global context [14, 106]. This not only enhances

performance but also allows for high parallelism and scalability, enabling training on large

datasets [106].

Transformer Encoder

Figure A.2: Original transformer architecture. Figure taken from Vaswani et al. [106] and
encoder highlighted.
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A.2.1 Core architecture

The original transformer model, shown in Figure A.2, uses an encoder-decoder architecture

typical for sequence-to-sequence models [99]. However, as the decoder is used for language

generation, it is not relevant for this study [106].

The transformer processes context-enriched tokenized input, usually word embeddings [74]

enhanced by positional encoding, through its encoder [106]. This combination of word

embeddings and positional encoding produces a high-dimensional vector representation

of each token’s semantic meaning and position in the input [106]. Specifically, the input

consists of the sum of word embeddings and positional encoding for each token [106]. The

original transformer architecture relies on alternating sine and cosine functions to add

information about the position of each token in the input to the word embeddings:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
(A.5)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)
(A.6)

where pos is the position of the token in the input sequence, i is the index of the dimension

within the positional encoding vector, and dmodel is the total dimension of the model, with

dmodel = 512 in the original transformer [106]. This combination of parameters ensures

that the positional encoding remains unique for each position in the sequence. In the

absence of techniques like recurrence, positional encoding ensures that the transformer

can consider the position of a token in the input for its predictions [106].

To transform the input, the encoder first calculates Query (Q), Key (K), and Value

(V ) matrices for each token as linear transformations of the input matrix (i.e. all word

embeddings with positional encoding added) [106]. These matrices are combined into the

Scaled Dot-Product Attention as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (A.7)

where dk represents the dimensionality of the key vectors [106]. The obtained attention

values represent how similar each input token is to all other tokens, including itself [106].

As the weights used to calculate Q, K, and V are the same for all words, all matrices

and attention values can be computed in parallel, significantly speeding up operations

and highlighting the contrast to the sequential processing of traditional RNN and LSTM

architectures [106]. Moreover, the above attention head can be duplicated and different

attention values calculated in parallel for h linear transformed versions of Q, K, V to

obtain multiple different contextualisations of the input [106]. According to Vaswani et

al. [106], this Multi-Head Attention can be represented as follows:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh) (A.8)
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where

headi = Attention(QWQ
i , KWK

i , V W V
i ) (A.9)

Here, WQ
i , WK

i , and W V
i are the learned projection matrices for the i-th attention

head [106]. In the original transformer, h = 8 heads are employed in parallel [106].

The Multi-Head Attention output is consumed by a simple feed-network, which gener-

ates the final encoder outputs [106]. The authors also added residual connections with

subsequent layer normalisation around both sublayers, the Multi-Head Attention and the

feed-forward network, to preserve the original input information. Hence, each sublayer’s

output can be described as LayerNorm(x+ Sublayer(x)) [106].

The full encoder component can be stacked as identical layers, with the original trans-

former employing six encoder layers [106].

A.2.2 Pre-trained transformer models

Pre-trained transformer models have revolutionised NLP, significantly improving the ef-

ficiency and accuracy of modern NLP techniques [110]. These models follow a two-step

training process: pre-training a model on large amounts of unlabelled data, learning to

solve different pre-training tasks, and subsequently fine-tuning it on a specific downstream

task through supervised learning [25]. This approach creates versatile base models with

a general understanding of language, which are then tailored to various NLP tasks [14].

While pre-training LLMs requires substantial computational resources, fine-tuning is rela-

tively resource-efficient [14]. Among the pre-trained models, BERT [25] and its optimised

version RoBERTa [68] stand out as particularly successful NLP models, given their strong

performance across a variety of tasks [14]. Unlike models like OpenAI’s GPT [80], which

are unidirectional, BERT and RoBERTa are bidirectional and can capture context in both

directions of the input [25].

BERT

Bidirectional Encoder Representations from Transformers (BERT), introduced by Devlin

et al. [25] in 2018, has revolutionised NLP, often delivering state-of-the-art performances

in a variety of tasks [14, 25, 68]. BERT is a pre-trained large language model (LLM)

utilising the transformer [106] encoder architecture(Section A.2) [25]. Unlike traditional

transformers, however, BERT can leverage bidirectional context, i.e. context in both

directions of each input token [25]. The model was pre-trained on the BooksCorpus

and English Wikipedia, with 800 million and 2.5 billion words respectively and was ini-

tially published in two versions: BERT-base (110 million parameters) and BERT-large

(340 million parameters) [25]. Following the release of BERT, further variants were de-

veloped. The architectures relevant to this work include its knowledge-distilled version

DistilBERT [87], its version with optimised pre-training RoBERTa [68], and BERT-based
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models pre-trained on legal documents, such as LEGAL-BERT [16].

BERT’s strong performance mainly stems from its innovative pre-training tasks:

• Masked Language Model (MLM): For the MLM pre-training task, the authors ran-

domly masked 15 % of all input tokens and tasked BERT with predicting these

tokens [25]. This objective allows the model to learn the context in both directions

of the input [25].

• Next Sentence Prediction (NSP): Devlin et al. [25] argue that understanding sentence-

relationships is a crucial part of many NLP tasks. To learn this relationship, BERT

was also trained on predicting the next sentence in the pre-training data for each

given input sentence [25].

Adding a single output network on top of the pre-trained BERT model is enough to

successfully fine-tune the model for numerous NLP tasks, including text zoning [25, 40].

RoBERTa

Liu et al. [68] presented the Robustly Optimized BERT Pretraining Approach (RoBERTa)

in 2019 as an enhanced approach to training BERT [25] models [68].

RoBERTa’s optimisations rest on four main modifications to BERT:

1. Liu et al. [68] used a larger training text corpora, which is about ten times bigger in

file size than the original corpora used by Devlin et al. [25]. Additionally, RoBERTa

was trained with larger batch sizes for an extended training time [68].

2. In contrast to the original BERT pre-training approach, RoBERTa is not trained

on the NSP objective [68].

3. RoBERTa uses dynamic masking [68]. Here, instead of the static masking approach

used by Devlin et al. [25], the mask is created dynamically when a new sequence is

introduced to the model [68].

4. Instead of the 30,000 token vocabulary on character-level used by Devlin et al.

[25], RoBERTa utilises a Byte-Pair Encoding (BPE) tokenizer with a vocabulary of

50,000 byte-level tokens [68].

RoBERTa typically achieves similar or superior performance to BERT in numerous NLP

tasks, making it a suitable starting point for this study [14, 50, 68].
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Appendix B

Data analysis details

The following figures provide additional information about the data used in this study as

well as the data analysis conducted in Chapter 3.

Section B.1 illustrates the origin of documents, while Section B.2 provides insights into

the top publishers of the CYBER I and CYBER II datasets. Table B.1 summarises this

information in a comprehensive table outlining the number of unique documents and

publishers per theme for each country. Section B.3 explains further details about this

study’s dataset.
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B.1 Origin of documents in the CYBER themes

Figure B.1 and Figure B.2 illustrate the origin of this work’s documents in the CYBER I

and CYBER II themes. The circles’ diameters indicate the number of documents orig-

inating from each country. Data from the European Union is aggregated with that of

Belgium.
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Figure B.1: Origin of the CYBER I documents.
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Figure B.2: Origin of the CYBER II documents.

While the CYBER I dataset is only marginally smaller than the CYBER II dataset in

terms of the total number of documents and pages, the CYBER II dataset is significantly

more diverse, containing documents from 66 different jurisdictions. In contrast, the CY-

BER I dataset only contains documents from 15 jurisdictions, comprising about half the

number of distinct publishers as the CYBER II dataset (see Table 3.1).
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B.2 Largest publishers in the CYBER themes

Figure B.3 and Figure B.4 show the largest publishers of cybersecurity regulations in

the CYBER I and CYBER II theme, respectively. The jurisdictions are indicated as

ALPHA-2 codes (ISO 3166)1.

Given the strategic importance of cybersecurity in these jurisdictions [22], it is unsurpris-

ing that the majority of regulations in the CYBER I and CYBER II datasets originate

from the United States, the European Union, the United Kingdom, and Canada.
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Figure B.3: Top ten publishers by number of documents in the CYBER I theme.
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Figure B.4: Top ten publishers by number of documents in the CYBER II theme.

1https://www.iso.org/obp/ui/#search
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B.3 Additional dataset details

The following figures provide additional insights into the structure of this study’s data.

Figure B.5 illustrates the different hierarchical levels in the Regulatory Genome Project

(RGP) ontology, explaining the structure of the detailed labels that are part of the snip-

pet identifier system’s auxiliary objective of matching snippets to the RGP ontology.

Figure B.6 reveals how these detailed labels are distributed across levels 0 to 3 in the

AML dataset.

Figure B.7 shows a screenshot of the comparison tool developed as part of this work to

gain detailed intuitive insights into individual pages of this study’s dataset. Figure B.8

and B.9 present various different data distributions, outlining the quantitative distribution

of different textual elements in the AML dataset as well as the distribution of the length

of the texts contained in these elements.

Figure B.5: Different hierarchical levels according to the Regulatory Genome Project
(RGP). Graphic taken from Cambridge Regulatory Genome Project [11].
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Figure B.6: Distribution of detailed labels per level in the AML dataset as defined by the
Regulatory Genome Project (RGP) ontology. The number of labels increases for more
granular levels, with 1, 19, 130, and 154 distinct labels for levels 0 to 3, respectively. The
label distributions reveal a strong class imbalance, particularly in levels 2 and 3, where one
label, followed by a small group of labels, accounts for a large proportion of the samples.
The samples in this figure correspond to the samples in the sentence-level model dataset
(Section 5.2.2) but are indicative of the general label distribution.
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Figure B.8: Distributions for number of different textual elements in the AML dataset.
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Appendix C

Details on methodologies

This chapter provides details on some of the algorithms and methodologies employed

throughout this study. Specifically, further details on RegGenome’s snippeting algorithm

(Section C.1), the approach to determining the optimal threshold to label GraphSeg seg-

ments and blocks (Section C.2) as well as the sentence splitting strategies of the sentence-

level model (Section C.3) are given.

C.1 RegGenome’s snippeting algorithm

Algorithm 1 Pseudocode for RegGenome’s snippeting algorithm

1: Input: Page of text
2: Output: List of snippets
3: function split page into snippets(page)
4: regexes← Compile regular expressions (regex) to identify table of contents (ToC)
5: character types ← Load regexes for headings & sections (e.g., ”1)”, ”1.1”, ...)
6: # Step I: Identify character type of page
7: if ToC is present then
8: toc type ← Determine ToC type by regex matching
9: else

10: longest span ← Find longest span for each character type
11: selected type ← Select type with the longest span
12: end if
13: # Step II: Create snippets
14: if character type of text identified then
15: snippets ← Form text sections according to identified pattern
16: else
17: snippets ← Split by size and simple split points
18: end if
19: # Step III: Create final output
20: snippets ← Add snippet index, start and end position for each snippet
21: return snippets
22: end function
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C.2 Threshold determination for segment labelling

in GraphSeg and Blocks models

The dataset creation for the GraphSeg and Blocks models presented in Section 5.1 requires

a statistical approach to labelling GraphSeg segments and blocks as representing regions

or not. The following describes the labelling approach we followed in more detail.

Given the Jaccard similarity scores (Section 3.4) between each Graphseg segment or block

S(p) and region in the dataset R(p) for all pages P (d) of a document d across all documents

in the dataset D as well as an optimal splitting threshold Tsplit, we can label all segments

whose Jaccard similarity exceeds Tsplit as 1 and all other segments as 0.

To determine Tsplit, we used the elbow method [104], as implemented in the kneed pack-

age1. Despite criticism of its potential subjectivity [92], we contend its effectiveness in

providing an adequate splitting point in this context.

We calculated Tsplit by first collecting the maximum Jaccard similarity scores for each

region of each page of each document into an ordered set {si}Ni=1:

{si}Ni=1 = sort

⋃
d∈D

⋃
p∈P(d)

{
max
s∈S(p)

Jaccard(s, r) | r ∈ R(p)

} (C.1)

Furthermore, we calculated the cumulative distribution Cj based on {si}Ni=1:

Cj =

∑j
i=1 si∑N
i=1 si

, ∀j ∈ {1, 2, . . . , N} (C.2)

Using the elbow method, Tsplit = sK was determined through the calculation of the ”Knee

Point” K [89]:

K = arg max
j∈{1,2,...,N}

|Cj+1 − Cj| (C.3)

Based on this method, Tsplit was determined as 0.82 for blocks and 0.58 for GraphSeg

segments. These threshold values were consequently used to label all segments for the

TS-based snippet identifier models.

1https://pypi.org/project/kneed/

90

https://pypi.org/project/kneed/


C.3 Detailed description of sentence-splitting com-

ponents

The performance of the sentence-level model (Section 5.2) is strongly dependent on the

sentence-splitting component used to split the text of a page into sentences. To ensure

robust performance, this study employed the following three sentence boundary detection

(SBD) methods:

1. Customly trained Punkt: Punkt is an unsupervised SBD approach developed

by Kiss and Strunk [56], which is widely adopted for the task of sentence split-

ting. Research on the use of such off-the-shelf models in the legal domain, however,

has shown that approaches like Punkt often perform poorly in this field [86, 90].

According to Sanchez [86], for instance, Punkt needs to be trained and updated

before it can be used for legal SBD, and Savelka et al. [90] similarly highlight that

training Punkt is not only relatively cheap due to its unsupervised nature but also

encouraged to improve performance in the legal domain. Therefore, as part of this

work, NLTK’s Punkt implementation2 was used, and the model was trained on the

AML dataset. Subsequently, it could be employed as the SBD component of the

sentence-level model.

2. Extended SpaCy: As an additional sentence splitting method, the English lan-

guage model en core web sm of the NLP library SpaCy3 was implemented into the

model pipeline. Beyond the default implementation of SpaCy’s pipeline, a custom

component was introduced to refine SBD based on observations from the behaviour

of the default system on the dataset used in this study. Specifically, an additional

rule was introduced to enforce a new sentence boundary when encountering two con-

secutive newline characters (”\n”) with optional whitespace characters in between.

3. MultiLegalSBD: The final SBD method employed in this study is MultiLegalSBD,

a state-of-the-art transformer-based model specifically developed for SBD within the

legal domain. The model was introduced in 2023 by Brugger et al. [10] and shows

a robust performance across a diverse range of legal documents. For this work,

we utilised the multilingual version of the model, which is accessible through the

Hugging Face Transformers library token classification pipeline4.

2https://www.nltk.org/api/nltk.tokenize.punkt.html
3https://spacy.io/models/en
4https://huggingface.co/rcds/distilbert-SBD-fr-es-it-en-de-judgements-laws
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Appendix D

Hyperparameter optimisation details

This chapter details the hyperparameter optimisation (HPO) studies conducted for the

sentence-level (Section 5.2.3) and token-level (Section 5.3.3) models. All HPO studies

used the Optuna framework1 with default configurations. The objective for each trial was

to minimise the main objective’s loss. The following summarises the search spaces for both

model types. Tables D.1-D.3 list the exact configurations explored for the sentence-level

model (50 trials each), while Table D.4 shows the token-level model study (18 trials).

For the sentence-level model:

• Detailed labels levels (levels): [], [1], [2], [1,2] (level 0 is trivial, level 3 too complex)

• Weights for detailed labels loss (weight level 1 & weight level 2 ): floating-point

number between 0.1 and 1

• Number of attention heads (nhead): 2, 4, 8, 16 (transformer-based model only)

• Hidden dimensions (hidden dim): 64, 128, 256, or 512 (for Bi-LSTM-based models),

512, 1024, 2048, 4096 (for transformer-based model)

• Number of layers (nlayers): integer between 1 and 8 (for Bi-LSTM-based models),

integer between 1 and 24 for (transformer-based model)

• Dropout rate (dropout): floating-point number between 0.1 and 0.5

• α loss parameter (alpha): floating-point number between 0 and 1

For the token-level model:

• Detailed labels levels (levels): [], [1], [2], [1,2] (level 0 is trivial, level 3 too complex)

• Weights for detailed labels loss (weight level 1 & weight level 2 ): floating-point

number between 0.1 and 1

• α loss parameter (alpha): floating-point number between 0 and 1

1https://optuna.org/
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ID Levels
Weight
level 0

Weight
level 1

Hidden
dim

Nlayers Dropout Alpha State Value

0 [1, 2] 0.820 0.132 512 6 0.461 0.266 COMPL. 0.653
1 None NaN NaN 128 6 0.226 NaN COMPL. 0.467
2 [2] 0.382 NaN 512 6 0.235 0.759 COMPL. 0.650
3 [1] 0.734 NaN 256 6 0.219 0.423 COMPL. 0.657
4 [1] 0.620 NaN 512 1 0.329 0.289 COMPL. 0.606
5 [1, 2] 0.519 0.902 256 3 0.476 0.996 COMPL. 0.460
6 None NaN NaN 64 5 0.380 NaN COMPL. 0.480
7 None NaN NaN 256 7 0.300 NaN COMPL. 0.456
8 [1] 0.609 NaN 512 5 0.468 0.706 COMPL. 0.646
9 [1] 0.124 NaN 512 3 0.164 0.382 COMPL. 0.647
10 None NaN NaN 256 8 0.123 NaN COMPL. 0.457
11 None NaN NaN 256 8 0.103 NaN COMPL. 0.456
12 None NaN NaN 256 8 0.106 NaN COMPL. 0.456
13 None NaN NaN 256 8 0.102 NaN COMPL. 0.456
14 [2] 0.970 NaN 128 8 0.167 0.024 COMPL. 0.522
15 None NaN NaN 64 7 0.164 NaN COMPL. 0.479
16 None NaN NaN 256 3 0.282 NaN COMPL. 0.457
17 None NaN NaN 256 7 0.105 NaN COMPL. 0.456
18 [2] 0.106 NaN 256 4 0.183 0.022 COMPL. 0.614
19 [1, 2] 0.322 0.418 64 8 0.346 0.647 COMPL. 0.630
20 None NaN NaN 128 1 0.420 NaN COMPL. 0.499
21 None NaN NaN 256 8 0.101 NaN COMPL. 0.456
22 None NaN NaN 256 7 0.139 NaN COMPL. 0.456
23 None NaN NaN 256 7 0.139 NaN COMPL. 0.456
24 None NaN NaN 256 7 0.136 NaN COMPL. 0.456
25 None NaN NaN 256 7 0.142 NaN COMPL. 0.456
26 None NaN NaN 256 5 0.201 NaN COMPL. 0.455
27 [2] 0.970 NaN 256 4 0.198 0.985 COMPL. 0.457
28 [1, 2] 0.277 0.983 128 5 0.267 0.566 COMPL. 0.631
29 [1, 2] 0.445 0.609 64 6 0.258 0.127 COMPL. 0.539
30 None NaN NaN 256 2 0.199 NaN COMPL. 0.462
31 None NaN NaN 256 7 0.146 NaN COMPL. 0.456
32 None NaN NaN 256 6 0.139 NaN COMPL. 0.456
33 None NaN NaN 256 6 0.233 NaN COMPL. 0.456
34 None NaN NaN 256 6 0.230 NaN COMPL. 0.456
35 None NaN NaN 128 6 0.248 NaN COMPL. 0.467
36 [1] 0.819 NaN 512 5 0.211 0.840 COMPL. 0.646
37 [2] 0.230 NaN 256 4 0.183 0.836 COMPL. 0.653
38 None NaN NaN 256 6 0.235 NaN COMPL. 0.457
39 None NaN NaN 256 6 0.330 NaN COMPL. 0.457
40 [1] 0.679 NaN 512 5 0.213 0.174 COMPL. 0.647
41 None NaN NaN 256 7 0.131 NaN COMPL. 0.457
42 None NaN NaN 256 5 0.175 NaN COMPL. 0.455
43 None NaN NaN 256 5 0.175 NaN COMPL. 0.455
44 None NaN NaN 256 5 0.161 NaN COMPL. 0.455
45 [1, 2] 0.495 0.102 256 5 0.181 0.523 COMPL. 0.655
46 None NaN NaN 64 4 0.160 NaN COMPL. 0.476
47 None NaN NaN 256 5 0.196 NaN COMPL. 0.455
48 [1] 0.848 NaN 512 5 0.197 0.402 COMPL. 0.647
49 None NaN NaN 256 4 0.177 NaN COMPL. 0.457

Table D.1: Overview of Optuna trials for the HPO of the Bi-LSTM model. The best trial
is highlighted in grey.
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ID Levels
Weight
level 0

Weight
level 1

Hidden
dim

Nlayers Dropout Alpha State Value

0 None NaN NaN 256 6 0.142 NaN COMPL. 0.439
1 [2] 0.610 NaN 256 3 0.336 0.086 COMPL. 0.445
2 [1, 2] 0.536 0.162 64 7 0.116 0.588 COMPL. 0.468
3 [1, 2] 0.969 0.612 256 7 0.147 0.008 COMPL. 0.438
4 [1, 2] 0.135 0.200 512 3 0.313 0.492 COMPL. 0.393
5 None NaN NaN 256 3 0.249 NaN PRUNED 484.512
6 [1, 2] 0.899 0.536 256 7 0.325 0.839 PRUNED 249.600
7 [1] 0.937 NaN 512 5 0.339 0.455 COMPL. 0.443
8 [1, 2] 0.582 0.436 64 1 0.434 0.905 PRUNED 718.294
9 None NaN NaN 256 5 0.460 NaN PRUNED 476.150
10 [2] 0.124 NaN 512 2 0.228 0.384 PRUNED 672.324
11 [1, 2] 0.210 0.948 128 8 0.196 0.053 PRUNED 694.799
12 [1, 2] 0.371 0.733 512 4 0.412 0.239 COMPL. 0.442
13 [1] 0.764 NaN 128 4 0.270 0.649 PRUNED 638.878
14 [1, 2] 0.337 0.183 512 8 0.173 0.311 PRUNED 150.862
15 [1, 2] 0.780 0.385 512 1 0.387 0.723 PRUNED 674.111
16 [1, 2] 0.453 0.682 128 6 0.282 0.198 PRUNED 540.388
17 [1] 0.763 NaN 64 3 0.375 0.537 PRUNED 644.638
18 [2] 0.988 NaN 256 6 0.201 0.979 PRUNED 677.464
19 [1, 2] 0.245 0.323 512 2 0.302 0.013 COMPL. 0.400
20 [1, 2] 0.204 0.294 512 2 0.494 0.171 PRUNED 641.796
21 [1, 2] 0.273 0.283 512 2 0.304 0.020 PRUNED 137.310
22 [1, 2] 0.110 0.632 512 4 0.361 0.003 COMPL. 0.443
23 [1, 2] 0.221 0.490 512 3 0.295 0.120 COMPL. 0.393
24 [1, 2] 0.210 0.432 512 3 0.303 0.137 PRUNED 626.406
25 [1, 2] 0.339 0.286 512 2 0.256 0.321 PRUNED 364.159
26 None NaN NaN 512 1 0.226 NaN PRUNED 712.433
27 [1] 0.427 NaN 512 3 0.304 0.403 COMPL. 0.398
28 [1] 0.472 NaN 512 4 0.356 0.436 PRUNED 635.109
29 [1] 0.427 NaN 512 3 0.390 0.690 PRUNED 320.332
30 [1] 0.136 NaN 128 5 0.319 0.281 PRUNED 530.981
31 [1] 0.285 NaN 512 2 0.279 0.513 PRUNED 350.849
32 [2] 0.265 NaN 512 3 0.303 0.118 PRUNED 333.850
33 None NaN NaN 512 2 0.338 NaN PRUNED 357.184
34 [1, 2] 0.194 0.102 64 4 0.239 0.390 PRUNED 694.589
35 [2] 0.400 NaN 512 3 0.287 0.110 PRUNED 633.667
36 [1, 2] 0.674 0.501 512 3 0.267 0.573 PRUNED 635.162
37 [1] 0.164 NaN 64 2 0.323 0.232 PRUNED 591.747
38 [1, 2] 0.297 0.338 512 1 0.350 0.077 PRUNED 661.073
39 None NaN NaN 512 3 0.319 NaN PRUNED 148.923
40 [1, 2] 0.502 0.190 256 4 0.123 0.767 PRUNED 472.548
41 [1, 2] 0.674 0.798 256 3 0.102 0.047 PRUNED 688.181
42 [1, 2] 0.245 0.611 256 7 0.158 0.164 PRUNED 687.719
43 [1, 2] 0.848 0.446 256 5 0.209 0.621 PRUNED 449.029
44 [1, 2] 0.573 0.528 256 7 0.174 0.077 PRUNED 467.254
45 [1, 2] 0.159 0.234 128 1 0.412 0.003 PRUNED 692.269
46 [1] 0.340 NaN 256 8 0.133 0.375 PRUNED 690.430
47 [1, 2] 0.634 0.601 512 6 0.237 0.467 PRUNED 180.310
48 [2] 0.231 NaN 64 5 0.258 0.232 PRUNED 666.506
49 None NaN NaN 512 2 0.444 NaN PRUNED 637.144

Table D.2: Overview of Optuna trials for the HPO of the Bi-LSTM+CRF model. The
best trial is highlighted in grey.
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ID Levels
Weight
level 0

Weight
level 1

Nhead
Hidden
dim

Nlayers Dropout Alpha State Value

0 [1] 0.188 NaN 8 2048 23 0.181 0.445 COMPL. 0.335
1 [1, 2] 0.266 0.684 8 4096 24 0.340 0.672 COMPL. 0.438
2 [1] 0.548 NaN 4 2048 8 0.307 0.900 COMPL. 0.320
3 [1, 2] 0.328 0.620 2 1024 14 0.244 0.742 COMPL. 0.333
4 None NaN NaN 4 4096 19 0.437 NaN COMPL. 0.333
5 None NaN NaN 8 1024 17 0.138 NaN PRUNED 0.428
6 [2] 0.636 NaN 16 2048 16 0.361 0.351 COMPL. 0.341
7 [2] 0.249 NaN 4 2048 8 0.116 0.599 COMPL. 0.339
8 [1, 2] 0.256 0.371 2 4096 2 0.310 0.403 PRUNED 1.248
9 None NaN NaN 8 4096 3 0.455 NaN PRUNED 0.349
10 [1] 0.938 NaN 4 512 9 0.239 0.994 PRUNED 0.378
11 [1, 2] 0.542 0.999 2 1024 11 0.241 0.882 PRUNED 0.767
12 [1] 0.520 NaN 2 1024 13 0.248 0.022 COMPL. 0.382
13 [1, 2] 0.728 0.128 16 512 7 0.390 0.792 PRUNED 0.785
14 [1] 0.405 NaN 4 1024 13 0.282 0.752 PRUNED 0.301
15 [1, 2] 0.367 0.660 2 2048 5 0.191 0.997 PRUNED 0.369
16 [1] 0.795 NaN 2 1024 11 0.305 0.591 COMPL. 0.347
17 [2] 0.395 NaN 4 2048 16 0.399 0.838 PRUNED 0.350
18 [1, 2] 0.468 0.958 16 512 5 0.499 0.273 COMPL. 0.389
19 [1] 0.122 NaN 4 1024 21 0.199 0.692 PRUNED 0.302
20 [1] 0.642 NaN 2 2048 14 0.283 0.905 PRUNED 0.597
21 None NaN NaN 4 4096 20 0.468 NaN PRUNED 0.448
22 None NaN NaN 4 4096 20 0.395 NaN PRUNED 0.439
23 None NaN NaN 4 4096 18 0.437 NaN PRUNED 0.416
24 None NaN NaN 4 1024 10 0.346 NaN PRUNED 0.357
25 None NaN NaN 4 4096 15 0.160 NaN PRUNED 0.350
26 [1, 2] 0.986 0.465 2 2048 18 0.219 0.565 PRUNED 0.339
27 [2] 0.643 NaN 16 512 6 0.322 0.726 PRUNED 0.967
28 [1, 2] 0.319 0.736 4 1024 10 0.268 0.208 COMPL. 0.361
29 [1] 0.835 NaN 8 2048 22 0.430 0.904 PRUNED 0.396
30 None NaN NaN 2 4096 19 0.500 NaN PRUNED 0.445
31 [1] 0.128 NaN 8 2048 24 0.183 0.469 COMPL. 0.330
32 [1] 0.145 NaN 8 2048 24 0.212 0.506 PRUNED 0.221
33 [1] 0.101 NaN 8 2048 23 0.185 0.646 PRUNED 0.283
34 [1] 0.204 NaN 8 2048 21 0.151 0.493 COMPL. 0.338
35 [1] 0.473 NaN 8 2048 17 0.101 0.812 PRUNED 0.341
36 [2] 0.322 NaN 8 2048 23 0.162 0.199 COMPL. 0.336
37 [1, 2] 0.463 0.239 4 4096 15 0.374 0.920 PRUNED 0.369
38 None NaN NaN 16 2048 1 0.325 NaN PRUNED 0.376
39 [1] 0.195 NaN 8 1024 24 0.225 0.430 COMPL. 0.347
40 [1, 2] 0.335 0.831 2 4096 12 0.262 0.526 COMPL. 0.332
41 [1, 2] 0.316 0.791 2 4096 12 0.257 0.512 COMPL. 0.334
42 [1, 2] 0.187 0.544 2 4096 8 0.128 0.352 PRUNED 2.552
43 [1, 2] 0.607 0.844 2 4096 12 0.283 0.637 PRUNED 0.237
44 [1, 2] 0.582 0.591 2 4096 14 0.236 0.716 PRUNED 0.265
45 [1, 2] 0.277 0.874 2 512 9 0.266 0.368 PRUNED 0.696
46 [2] 0.421 NaN 4 1024 4 0.206 0.542 PRUNED 0.418
47 [1] 0.235 NaN 2 4096 7 0.297 0.274 COMPL. 0.351
48 [1, 2] 0.712 0.437 4 2048 16 0.348 0.457 COMPL. 0.340
49 [1] 0.368 NaN 16 1024 11 0.172 0.850 PRUNED 0.630

Table D.3: Overview of Optuna trials for the HPO of the transformer model. The best
trial is highlighted in grey.

95



ID Levels
Weight
level 0

Weight
level 1

State Value

0 [1] 0.646 NaN COMPL. 0.106
1 [2] 0.973 NaN COMPL. 0.118
2 None NaN NaN COMPL. 0.091
3 [1] 0.280 NaN COMPL. 0.117
4 [1] 0.555 NaN COMPL. 0.106
5 [1] 0.656 NaN COMPL. 0.095
6 [2] 0.770 NaN PRUNED 1.070
7 [1] 0.778 NaN PRUNED 0.998
8 None NaN NaN COMPL. 0.097
9 [1] 0.112 NaN PRUNED 1.003
10 None NaN NaN COMPL. 0.097
11 [1, 2] 0.336 0.599 COMPL. 0.095
12 [1, 2] 0.344 0.601 COMPL. 0.098
13 [1, 2] 0.390 0.193 PRUNED 0.594
14 None NaN NaN COMPL. 0.097
15 [1, 2] 0.121 0.992 PRUNED 0.615
16 [1, 2] 0.464 0.561 PRUNED 0.628
17 None NaN NaN COMPL. 0.097

Table D.4: Overview of optuna trials for the HPO of the token-level model. The best
trial is highlighted in grey.
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